Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Bull Math Biol ; 85(12): 120, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914973

ABSTRACT

The origin of phenotypic novelty is a perennial question of genetics and evolution. To date, few studies of biological pattern formation specifically address multi-generational aspects of inheritance and phenotypic novelty. For quantitative traits influenced by many segregating alleles, offspring phenotypes are often intermediate to parental values. In other cases, offspring phenotypes can be transgressive to parental values. For example, in the model organism Mimulus (monkeyflower), the offspring of parents with solid-colored petals exhibit novel spotted petal phenotypes. These patterns are controlled by an activator-inhibitor gene regulatory network with a small number of loci. Here we develop and analyze a model of hybridization and pattern formation that accounts for the inheritance of a diploid gene regulatory network composed of either homozygous or heterozygous alleles. We find that the resulting model of multi-generational Turing-type pattern formation can reproduce transgressive petal phenotypes similar to those observed in Mimulus. The model gives insight into how non-patterned parent phenotypes can yield phenotypically transgressive, patterned offspring, aiding in the development of empirically testable hypotheses.


Subject(s)
Mimulus , Mimulus/genetics , Biological Evolution , Mathematical Concepts , Models, Biological , Phenotype , Hybridization, Genetic
3.
Ecol Evol ; 11(18): 12542-12553, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34594519

ABSTRACT

Environmental adaptation and species divergence often involve suites of co-evolving traits. Pigmentation in insects presents a variable, adaptive, and well-characterized class of phenotypes for which correlations with multiple other traits have been demonstrated. In Drosophila, the pigmentation genes ebony and tan have pleiotropic effects on flies' response to light, creating the potential for correlated evolution of pigmentation and vision. Here, we investigate differences in light preference within and between two sister species, Drosophila americana and D. novamexicana, which differ in pigmentation in part because of evolution at ebony and tan and occupy environments that differ in many variables including solar radiation. We hypothesized that lighter pigmentation would be correlated with a greater preference for environmental light and tested this hypothesis using a habitat choice experiment. In a first set of experiments, using males of D. novamexicana line N14 and D. americana line A00, the light-bodied D. novamexicana was found slightly but significantly more often than D. americana in the light habitat. A second experiment, which included additional lines and females as well as males, failed to find any significant difference between D. novamexicana-N14 and D. americana-A00. Additionally, the other dark line of D. americana (A04) was found in the light habitat more often than the light-bodied D. novamexicana-N14, in contrast to our predictions. However, the lightest line of D. americana, A01, was found substantially and significantly more often in the light habitat than the two darker lines of D. americana, thus providing partial support for our hypothesis. Finally, across all four lines, females were found more often in the light habitat than their more darkly pigmented male counterparts. Additional replication is needed to corroborate these findings and evaluate conflicting results, with the consistent effect of sex within and between species providing an especially intriguing avenue for further research.

4.
Plant Cell ; 33(7): 2235-2257, 2021 08 13.
Article in English | MEDLINE | ID: mdl-33895820

ABSTRACT

Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.


Subject(s)
Mimulus/metabolism , Genome, Plant/genetics , Genomic Imprinting/genetics , Genomic Imprinting/physiology , Hybridization, Genetic , Mimulus/genetics , Seeds/genetics , Seeds/metabolism
5.
Genetics ; 217(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33724417

ABSTRACT

Much of the visual diversity of angiosperms is due to the frequent evolution of novel pigmentation patterns in flowers. The gene network responsible for anthocyanin pigmentation, in particular, has become a model for investigating how genetic changes give rise to phenotypic innovation. In the monkeyflower genus Mimulus, an evolutionarily recent gain of petal lobe anthocyanin pigmentation in M. luteus var. variegatus was previously mapped to genomic region pla2. Here, we use sequence and expression analysis, followed by transgenic manipulation of gene expression, to identify MYB5a-orthologous to the NEGAN transcriptional activator from M. lewisii-as the gene responsible for the transition to anthocyanin-pigmented petals in M. l. variegatus. In other monkeyflower taxa, MYB5a/NEGAN is part of a reaction-diffusion network that produces semi-repeating spotting patterns, such as the array of spots in the nectar guides of both M. lewisii and M. guttatus. Its co-option for the evolution of an apparently non-patterned trait-the solid petal lobe pigmentation of M. l. variegatus-illustrates how reaction-diffusion can contribute to evolutionary novelty in non-obvious ways. Transcriptome sequencing of a MYB5a RNAi line of M. l. variegatus reveals that this genetically simple change, which we hypothesize to be a regulatory mutation in cis to MYB5a, has cascading effects on gene expression, not only on the enzyme-encoding genes traditionally thought of as the targets of MYB5a but also on all of its known partners in the anthocyanin regulatory network.


Subject(s)
Anthocyanins/genetics , Gene Regulatory Networks , Mimulus/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Anthocyanins/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Mimulus/metabolism , Pigmentation , Plant Proteins/metabolism , Transcription Factors/metabolism
6.
PeerJ ; 8: e9958, 2020.
Article in English | MEDLINE | ID: mdl-33194368

ABSTRACT

Broad-leaved monocot herbs are widespread and dominant components of the shaded understories of wet neotropical forests. These understory habitats are characterized by light limitation and a constant threat of falling branches. Many shaded understory herb species have close relatives that occupy forest edges and gaps, where light availability is higher and defoliation threat is lower, creating an opportunity for comparative analysis of functional traits in order to better understand the evolutionary adaptations associated with this habitat transition. We documented ecological, morphological and ecophysiological traits of multiple herb species in six monocot families from each of these two habitats in the wet tropical rainforest at the La Selva Biological Station, Costa Rica. We found that a mixture of phylogenetic canalization and ecological selection for specific habitats helped explain patterns of functional traits. Understory herbs were significantly shorter and had smaller leaves than forest edge species. Although the mean number of leaves per plant and specific leaf area did not differ between the two groups, the larger leaf size of forest edge species gave them more than three times the mean plant leaf area. Measures of leaf water content and nitrogen content varied within both groups and mean values were not significantly different. Despite the high leaf nitrogen contents, the maximum photosynthetic rates of understory herbs were quite low. Measures of δ 13C as an analog of water use efficiency found significantly lower (more negative) values in understory herbs compared to forest edge species. Clonality was strongly developed in several species but did not show strong phylogenetic patterns. This study highlights many functional traits that differ between broad-leaved monocot species characteristic of understory and forest edge habitats, as well as traits that vary primarily by phylogenetic relatedness. Overall, plant functional traits do not provide a simple explanation for the relative differences in abundance for individual understory and forest edge species with some occurring in great abundance while others are relatively rare.

7.
Mol Ecol ; 29(15): 2840-2854, 2020 08.
Article in English | MEDLINE | ID: mdl-32603541

ABSTRACT

Phenotypic variation within a species is often structured geographically in clines. In Drosophila americana, a longitudinal cline for body colour exists within North America that appears to be due to local adaptation. The tan and ebony genes have been hypothesized to contribute to this cline, with alleles of both genes that lighten body colour found in D. americana. These alleles are similar in sequence and function to the allele fixed in D. americana's more lightly pigmented sister species, Drosophila novamexicana. Here, we examine the frequency and geographic distribution of these D. novamexicana-like alleles in D. americana. Among alleles from over 100 strains of D. americana isolated from 21 geographic locations, we failed to identify additional alleles of tan or ebony with as much sequence similarity to D. novamexicana as the D. novamexicana-like alleles previously described. However, using genetic analysis of 51 D. americana strains derived from 20 geographic locations, we identified one new allele of ebony and one new allele of tan segregating in D. americana that are functionally equivalent to the D. novamexicana allele. An additional 5 alleles of tan also showed marginal evidence of functional similarity. Given the rarity of these alleles, however, we conclude that they are unlikely to be driving the pigmentation cline. Indeed, phenotypic distributions of the 51 backcross populations analysed indicate a more complex genetic architecture, with diversity in the number and effects of loci altering pigmentation observed both within and among populations of D. americana. This genetic heterogeneity poses a challenge to association studies and genomic scans for clinal variation, but might be common in natural populations.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Color , Drosophila/genetics , North America , Pigmentation/genetics
8.
Plant Cell ; 29(9): 2150-2167, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28814644

ABSTRACT

Recent studies have shown that one of the parental subgenomes in ancient polyploids is generally more dominant, having retained more genes and being more highly expressed, a phenomenon termed subgenome dominance. The genomic features that determine how quickly and which subgenome dominates within a newly formed polyploid remain poorly understood. To investigate the rate of emergence of subgenome dominance, we examined gene expression, gene methylation, and transposable element (TE) methylation in a natural, <140-year-old allopolyploid (Mimulus peregrinus), a resynthesized interspecies triploid hybrid (M. robertsii), a resynthesized allopolyploid (M. peregrinus), and progenitor species (M. guttatus and M. luteus). We show that subgenome expression dominance occurs instantly following the hybridization of divergent genomes and significantly increases over generations. Additionally, CHH methylation levels are reduced in regions near genes and within TEs in the first-generation hybrid, intermediate in the resynthesized allopolyploid, and are repatterned differently between the dominant and recessive subgenomes in the natural allopolyploid. Subgenome differences in levels of TE methylation mirror the increase in expression bias observed over the generations following hybridization. These findings provide important insights into genomic and epigenomic shock that occurs following hybridization and polyploid events and may also contribute to uncovering the mechanistic basis of heterosis and subgenome dominance.


Subject(s)
Genome, Plant , Hybridization, Genetic , Mimulus/genetics , Polyploidy , DNA Methylation/genetics , Gene Duplication , Gene Expression Regulation, Plant , Phylogeny , Species Specificity
9.
G3 (Bethesda) ; 7(4): 1085-1095, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28258113

ABSTRACT

While quantitative PCR (qPCR) is widely recognized as being among the most accurate methods for quantifying gene expression, it is highly dependent on the use of reliable, stably expressed reference genes. With the increased availability of high-throughput methods for measuring gene expression, whole-transcriptome approaches may be increasingly utilized for reference gene selection and validation. In this study, RNA-seq was used to identify a set of novel qPCR reference genes and evaluate a panel of traditional "housekeeping" reference genes in two species of the evolutionary model plant genus Mimulus More broadly, the methods proposed in this study can be used to harness the power of transcriptomes to identify appropriate reference genes for qPCR in any study organism, including emerging and nonmodel systems. We find that RNA-seq accurately estimates gene expression means in comparison to qPCR, and that expression means are robust to moderate environmental and genetic variation. However, measures of expression variability were only in agreement with qPCR for samples obtained from a shared environment. This result, along with transcriptome-wide comparisons, suggests that environmental changes have greater impacts on expression variability than on expression means. We discuss how this issue can be addressed through experimental design, and suggest that the ever-expanding pool of published transcriptomes represents a rich and low-cost resource for developing better reference genes for qPCR.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Mimulus/genetics , Transcriptome/genetics , Gene Expression Profiling , Reference Standards , Selection, Genetic , Sequence Analysis, RNA
10.
G3 (Bethesda) ; 6(9): 2955-62, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27449514

ABSTRACT

To identify genetic variants underlying changes in phenotypes within and between species, researchers often utilize transgenic animals to compare the function of alleles in different genetic backgrounds. In Drosophila, targeted integration mediated by the ΦC31 integrase allows activity of alternative alleles to be compared at the same genomic location. By using the same insertion site for each transgene, position effects are generally assumed to be controlled for because both alleles are surrounded by the same genomic context. Here, we test this assumption by comparing the activity of tan alleles from two Drosophila species, D. americana and D. novamexicana, at five different genomic locations in D. melanogaster We found that the relative effects of these alleles varied among insertion sites, with no difference in activity observed between them at two sites. One of these sites simply silenced both transgenes, but the other allowed expression of both alleles that was sufficient to rescue a mutant phenotype yet failed to reveal the functional differences between the two alleles. These results suggest that more than one insertion site should be used when comparing the activity of transgenes because failing to do so could cause functional differences between alleles to go undetected.


Subject(s)
Alleles , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Transgenes/genetics , Animals , Animals, Genetically Modified , Chromosomal Proteins, Non-Histone/biosynthesis , DNA-Binding Proteins/biosynthesis , Drosophila Proteins/biosynthesis , Genome, Insect , Genomics , Integrases/genetics , Phenotype , Species Specificity
11.
Am J Bot ; 103(6): 1030-40, 2016 06.
Article in English | MEDLINE | ID: mdl-27283023

ABSTRACT

PREMISE OF THE STUDY: Reproductive isolation between sympatric species pairs may be maintained by both pre- and postmating barriers. Here we evaluate potential barriers to mating between the outcrossing Mimulus luteus and its more highly selfing sympatric congener, M. cupreus, two members of the South American luteus complex of Mimulus. METHODS: Seed set was compared following autonomous self-pollination, manual pollination, conspecific outcrossing, and sympatric and allopatric hybridization, for laboratory-maintained inbred lines and wild-collected accessions. Survival and reproductive fitness of hybrids relative to parental species were examined across environments that differed with respect to temperature and soil nutrients, two factors that vary across the ranges of M. luteus and M. cupreus. KEY RESULTS: Mimulus luteus was minimally capable of autonomous self-fertilization, consistent with reliance on an animal pollinator, whereas M. cupreus was a successful selfer across all tested accessions. Postmating barriers to hybridization are negligible, in both low- and high-stress environments, across multiple sympatric and allopatric populations. CONCLUSION: As in the North American M. guttatus-M. nasutus species pair, postmating barriers contribute little to isolation between M. luteus and M. cupreus. This result reinforces the importance of premating barriers, specifically species differences in reliance on, and accessibility to, animal pollinators. A unique aspect of the M. luteus-M. cupreus pair is the recent gain of red floral anthocyanin pigmentation in M. cupreus. On the basis of species differences in vegetative anthocyanin production, a facultative stress-protective response, we propose a potential stress-protective role for the constitutive floral anthocyanins of M. cupreus.


Subject(s)
Crosses, Genetic , Mimulus/physiology , Self-Fertilization/physiology , Chile , Droughts , Ecotype , Genetic Fitness , Hot Temperature , Hybridization, Genetic , Inbreeding , Plant Leaves/physiology , Pollination/physiology , Reproductive Isolation , Seeds/physiology , Species Specificity
12.
Am J Bot ; 103(7): 1272-88, 2016 07.
Article in English | MEDLINE | ID: mdl-27221281

ABSTRACT

PREMISE OF THE STUDY: Hybridization between diploids and tetraploids can lead to new allopolyploid species, often via a triploid intermediate. Viable triploids are often produced asymmetrically, with greater success observed for "maternal-excess" crosses where the mother has a higher ploidy than the father. Here we investigated the evolutionary origins of Mimulus peregrinus, an allohexaploid recently derived from the triploid M. ×robertsii, to determine whether reproductive asymmetry has shaped the formation of this new species. METHODS: We used reciprocal crosses between the diploid (M. guttatus) and tetraploid (M. luteus) progenitors to determine the viability of triploid M. ×robertsii hybrids resulting from paternal- vs. maternal-excess crosses. To investigate whether experimental results predict patterns seen in the field, we performed parentage analyses comparing natural populations of M. peregrinus to its diploid, tetraploid, and triploid progenitors. Organellar sequences obtained from pre-existing genomic data, supplemented with additional genotyping was used to establish the maternal ancestry of multiple M. peregrinus and M. ×robertsii populations. KEY RESULTS: We found strong evidence for asymmetric origins of M. peregrinus, but opposite to the common pattern, with paternal-excess crosses significantly more successful than maternal-excess crosses. These results successfully predicted hybrid formation in nature: 111 of 114 M. ×robertsii individuals, and 27 of 27 M. peregrinus, had an M. guttatus maternal haplotype. CONCLUSION: This study, which includes the first Mimulus chloroplast genome assembly, demonstrates the utility of parentage analysis through genome skimming. We highlight the benefits of complementing genomic analyses with experimental approaches to understand asymmetry in allopolyploid speciation.


Subject(s)
Genome, Plant/genetics , Hybridization, Genetic/genetics , Mimulus/genetics , Ploidies , Biological Evolution , Diploidy , Genome, Chloroplast/genetics , Genome, Mitochondrial/genetics , Genotype , Reproduction/genetics , Reproductive Isolation , Triploidy
13.
Evolution ; 69(6): 1487-1500, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25929999

ABSTRACT

Whole genome duplication (polyploidization) is a mechanism of "instantaneous" species formation that has played a major role in the evolutionary history of plants. Much of what we know about the early evolution of polyploids is based upon studies of a handful of recently formed species. A new polyploid hybrid (allopolyploid) species Mimulus peregrinus, formed within the last 140 years, was recently discovered on the Scottish mainland and corroborated by chromosome counts. Here, using targeted, high-depth sequencing of 1200 genic regions, we confirm the parental origins of this new species from M. x robertsii, a sterile triploid hybrid between the two introduced species M. guttatus and M. luteus that are naturalized and widespread in the United Kingdom. We also report a new population of M. peregrinus on the Orkney Islands and demonstrate that populations on the Scottish mainland and Orkney Islands arose independently via genome duplication from local populations of M. x robertsii. Our data raise the possibility that some alleles are already being lost in the evolving M. peregrinus genomes. The recent origins of a new species of the ecological model genus Mimulus via allopolyploidization provide a powerful opportunity to explore the early stages of hybridization and genome duplication in naturally evolved lineages.


Subject(s)
Gene Duplication , Genetic Speciation , Mimulus/genetics , Chromosomes, Plant , Genome, Plant , Hybridization, Genetic , Introduced Species , Polyploidy , United Kingdom
14.
Evol Dev ; 14(4): 317-25, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22765203

ABSTRACT

Pigmentation is a model trait for evolutionary and developmental analysis that is particularly amenable to molecular investigation in the genus Drosophila. To better understand how this phenotype evolves, we examined divergent pigmentation and gene expression over developmental time in the dark-bodied D. americana and its light-bodied sister species D. novamexicana. Prior genetic analysis implicated two enzyme-encoding genes, tan and ebony, in pigmentation divergence between these species, but questions remain about the underlying molecular mechanisms. Here, we describe stages of pupal development in both species and use this staging to determine when pigmentation develops and diverges between D. americana and D. novamexicana. For the developmental stages encompassing pigment divergence, we compare mRNA expression of tan and ebony over time and between species. Finally, we use allele-specific expression assays to determine whether interspecific differences in mRNA abundance have a cis-regulatory basis and find evidence of cis-regulatory divergence for both tan and ebony. cis-regulatory divergence affecting tan had a small effect on mRNA abundance and was limited to a few developmental stages, yet previous data suggests that this divergence is likely to be biologically meaningful. Our study suggests that small and developmentally transient expression changes may contribute to phenotypic diversification more often than commonly appreciated. Recognizing the potential phenotypic impact of such changes is important for a scientific community increasingly focused on dissecting quantitative variation, but detecting these types of changes will be a major challenge to elucidating the molecular basis of complex traits.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Evolution, Molecular , Gene Expression Regulation/genetics , Pigmentation/genetics , RNA, Messenger/genetics , Alleles , Animals , DNA-Binding Proteins/biosynthesis , Drosophila/metabolism , Drosophila Proteins/biosynthesis , Phenotype , Quantitative Trait Loci , RNA, Messenger/biosynthesis , Species Specificity
15.
Curr Biol ; 21(8): 700-4, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21474312

ABSTRACT

Identifying the genetic basis of parallelism reveals the means by which evolution repeats itself and shows what aspects-if any-may be predictable. The recently tetraploid luteus group of Mimulus contains five species native to central Chile, three of which have evolved extensive red floral pigmentation using at least two distinct loci . Here we show that the parallel evolution of petal lobe anthocyanin (PLA) pigmentation in M. cupreus and M. luteus var. variegatus occurred via separate yet strikingly similar mechanisms. In each case, a dominant, single-locus gain of pigmentation maps to a genomic region (pla1 and pla2, respectively) containing adjacent, apparently recently duplicated paralogs of MYB anthocyanin-regulating transcription factors. Interestingly, candidate genes in pla1 and pla2 are themselves related by an older duplication. In both cases, pla genotype cosegregates with expression of multiple genes in the anthocyanin biosynthetic pathway, revealing a mechanism of coordinated trans-regulatory expression changes across functionally related enzyme-encoding genes. We conclude that in this instance, evolution has repeated itself with marked consistency. Duplication has enabled that repetition to occur using two physically independent but functionally similar loci, highlighting the importance of genomic complexity to the evolutionary process.


Subject(s)
Biological Evolution , Flowers/genetics , Gene Duplication , Mimulus/genetics , Pigmentation , Anthocyanins/chemistry , Anthocyanins/genetics , Chile , Chromosomes, Plant/genetics , Flowers/chemistry , Gene Expression Regulation , Mimulus/chemistry , Species Specificity , Tetraploidy , Transcription Factors/genetics
16.
New Phytol ; 183(3): 729-739, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19453433

ABSTRACT

Deciphering the genetic architecture of phenotypic change provides a framework for understanding how evolution proceeds at a genetic level, and paves the way for work at the molecular level. A series of intra- and interspecific crosses were used to investigate the genetic control of recently evolved floral pigmentation phenotypes in a group of closely related Mimulus species from central Chile. An intraspecific polymorphism was found to be controlled by a single Mendelian locus. Differences between species, by contrast, were composed of multiple independent patterning elements, including both Mendelian and polygenic traits. The most striking phenotypic novelty in this group, anthocyanin pigmentation in the petal lobes, has evolved three times independently. The results illustrate how genetically simple modular elements can interact with polygenic or quantitative traits to create complex new phenotypes. The repeated evolution of petal lobe anthocyanins suggests that natural selection may have played a role in the evolution of red coloration in the Chilean Mimulus, and shows that red coloration has been achieved via different genetic pathways in these closely related species.


Subject(s)
Biological Evolution , Flowers/genetics , Genetic Variation , Mimulus/genetics , Pigmentation/genetics , Anthocyanins , Body Patterning/genetics , Chile , Chromosome Segregation/genetics , Chromosomes, Plant/genetics , Crosses, Genetic , Hybridization, Genetic , Light , Phenotype , Polymorphism, Genetic , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Seeds/genetics , Species Specificity
17.
Am J Bot ; 91(4): 573-81, 2004 Apr.
Article in English | MEDLINE | ID: mdl-21653413

ABSTRACT

Plants in light-limited tropical rainforest understories face an important carbon allocation trade-off: investment of available carbon into photosynthetic tissue should be advantageous, while risk of damage and mortality from falling debris favors investment into nonphotosynthetic structural tissue. We examined the modulus of rupture (σ(max)), Young's modulus of elasticity (E), and flexural stiffness (F) of stems and petioles in 14 monocot species from six families. These biomechanical properties were evaluated with respect to habitat, rates of leaf production, clonality, and growth form. Species with higher E and σ(max), indicating greater resistance per unit area to bending and breaking, respectively, tended to be shade-tolerant, slow growing, and nonclonal. This result is consistent with an increase in carbon allocation to structural tissue in shade-tolerant species at the expense of photosynthetic tissue and growth. Forest- edge species were weaker per unit area (had a lower E), but had higher flexural stiffness due to increases in stem and petiole diameter. While this is inefficient in requiring more carbon per unit of structural support, it may enable forest-edge species to support larger and heavier leaves. Our results emphasize the degree to which biomechanical traits vary with ecological niche and illustrate suites of characteristics associated with different carbon allocation strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...