Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Zootaxa ; 5346(5): 501-531, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-38221325

ABSTRACT

Tibicinoides, with three small endemic California cicada species, has a confusing, intertwined systematic history with Okanagana that we unravel here. An ingroup including all species of Tibicinoides and the majority (84.7%) of Okanagana species were sampled for six gene regions, polarized with Clidophleps, Okanagodes, Subpsaltria, and Tibicina outgroups, and subjected to Bayesian phylogenetic analysis. Although the ingroup was monophyletic from all outgroups including Tibicina, Tibicinoides rendered Okanagana paraphyletic among two major ingroup clades. To bring classification into agreement with phylogeny, we redescribe and redefine Tibicinoides to include all Okanagana species with a hooked uncus in the male genitalia, all of which grouped with the type T. cupreosparsa (Uhler, 1889) in the first of these clades: T. boweni (Chatfield-Taylor & Cole, 2020) comb. n., T. catalina (Davis, 1936) comb. n., T. hesperia (Uhler, 1876) comb. n., T. mercedita (Davis, 1915), T. minuta (Davis, 1915), T. pallidula (Davis, 1917a) comb. n., T. pernix (Bliven, 1964) comb. n., T. rubrovenosa (Davis, 1915) comb. n., T. simulata (Davis, 1921) comb. n., T. striatipes (Haldeman, 1852) comb. n., T. uncinata (Van Duzee, 1915) comb. n., T. utahensis (Davis, 1919) comb. n., and T. vanduzeei (Distant, 1914) comb. n. Okanagana is redescribed and restricted to the species of the second major clade which contained the type O. rimosa (Say, 1830). We describe two new genera for morphologically distinct orphan lineages: Chlorocanta gen. nov. for C. viridis (Davis, 1918) comb. n. and Hewlettia gen. nov. for H. nigriviridis (Davis, 1921) comb. n. We recognize O. rubrobasalis Davis, 1926 stat. rev. as a species and relegate two former species to junior subjective synonyms: O. noveboracensis (Emmons, 1854) = O. canadensis (Provancher, 1889) and O. occidentalis (Walker in Lord, 1866) = O. lurida Davis, 1919. Tibicinoides and Okanagana together represent a rapid radiation that presents challenges to phylogenetic analysis including suboptimal outgroups and short internodes.


Subject(s)
Hemiptera , Animals , Male , Phylogeny , Bayes Theorem , North America
2.
Sci Rep ; 12(1): 16967, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36217008

ABSTRACT

Periodical cicadas (Hemiptera: Magicicada) have coevolved with obligate bacteriome-inhabiting microbial symbionts, yet little is known about gut microbial symbiont composition or differences in composition among allochronic Magicicada broods (year classes) which emerge parapatrically or allopatrically in the eastern United States. Here, 16S rRNA amplicon sequencing was performed to determine gut bacterial community profiles of three periodical broods, including II (Connecticut and Virginia, 2013), VI (North Carolina, 2017), and X (Maryland, 2021, and an early emerging nymph collected in Ohio, 2017). Results showed similarities among all nymphal gut microbiomes and between morphologically distinct 17-year Magicicada, namely Magicicada septendecim (Broods II and VI) and 17-year Magicicada cassini (Brood X) providing evidence of a core microbiome, distinct from the microbiome of burrow soil inhabited by the nymphs. Generally, phyla Bacteroidetes [Bacteroidota] (> 50% relative abundance), Actinobacteria [Actinomycetota], or Proteobacteria [Pseudomonadota] represented the core. Acidobacteria and genera Cupriavidus, Mesorhizobium, and Delftia were prevalent in nymphs but less frequent in adults. The primary obligate endosymbiont, Sulcia (Bacteroidetes), was dominant amongst core genera detected. Chryseobacterium were common in Broods VI and X. Chitinophaga, Arthrobacter, and Renibacterium were common in Brood X, and Pedobacter were common to nymphs of Broods II and VI. Further taxonomic assignment of unclassified Alphaproteobacteria sequencing reads allowed for detection of multiple copies of the Hodgkinia 16S rRNA gene, distinguishable as separate operational taxonomic units present simultaneously. As major emergences of the broods examined here occur at 17-year intervals, this study will provide a valuable comparative baseline in this era of a changing climate.


Subject(s)
Gastrointestinal Microbiome , Hemiptera , Animals , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Hemiptera/genetics , RNA, Ribosomal, 16S/genetics , Soil , United States
3.
Annu Rev Entomol ; 67: 457-482, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34623904

ABSTRACT

Apart from model organisms, 13- and 17-year periodical cicadas (Hemiptera: Cicadidae: Magicicada) are among the most studied insects in evolution and ecology. They are attractive subjects because they predictably emerge in large numbers; have a complex biogeography shaped by both spatial and temporal isolation; and include three largely sympatric, parallel species groups that are, in a sense, evolutionary replicates. Magicicada are also relatively easy to capture and manipulate, and their spectacular, synchronized mass emergences facilitate outreach and citizen science opportunities. Since the last major review, studies of Magicicada have revealed insights into reproductive character displacement and the nature of species boundaries, provided additional examples of allochronic speciation, found evidence for repeated and parallel (but noncontemporaneous) evolution of 13- and 17-year life cycles, quantified the amount and direction of gene flow through time, revealed phylogeographic patterning resulting from paleoclimate change, examined the timing of juvenile development, and created hypotheses for the evolution of life-cycle control and the future effects of climate changeon Magicicada life cycles. New ecological studies have supported and questioned the role of prime numbers in Magicicada ecology and evolution, found bidirectional shifts in population size over generations, quantified the contribution of Magicicada to nutrient flow in forest ecosystems, and examined behavioral and biochemical interactions between Magicicada and their fungal parasites and bacterial endosymbionts.


Subject(s)
Hemiptera , Animals , Ecology , Ecosystem , Hemiptera/genetics , Hemiptera/microbiology , Humans , Life Cycle Stages , Phylogeography
4.
Fungal Ecol ; 41: 147-164, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31768192

ABSTRACT

Entomopathogenic fungi routinely kill their hosts before releasing infectious spores, but a few species keep insects alive while sporulating, which enhances dispersal. Transcriptomics- and metabolomics-based studies of entomopathogens with post-mortem dissemination from their parasitized hosts have unraveled infection processes and host responses. However, the mechanisms underlying active spore transmission by Entomophthoralean fungi in living insects remain elusive. Here we report the discovery, through metabolomics, of the plant-associated amphetamine, cathinone, in four Massospora cicadina-infected periodical cicada populations, and the mushroom-associated tryptamine, psilocybin, in annual cicadas infected with Massospora platypediae or Massospora levispora, which likely represent a single fungal species. The absence of some fungal enzymes necessary for cathinone and psilocybin biosynthesis along with the inability to detect intermediate metabolites or gene orthologs are consistent with possibly novel biosynthesis pathways in Massospora. The neurogenic activities of these compounds suggest the extended phenotype of Massospora that modifies cicada behavior to maximize dissemination is chemically-induced.

5.
Mol Biol Evol ; 36(6): 1187-1200, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30850829

ABSTRACT

The mass application of whole mitogenome (MG) sequencing has great potential for resolving complex phylogeographic patterns that cannot be resolved by partial mitogenomic sequences or nuclear markers. North American periodical cicadas (Magicicada) are well known for their periodical mass emergence at 17- and 13-year intervals in the north and south, respectively. Magicicada comprises three species groups, each containing one 17-year species and one or two 13-year species. Within each life cycle, single-aged cohorts, called broods, of periodical cicadas emerge in different years, and most broods contain members of all three species groups. There are 12 and three extant broods of 17- and 13-year cicadas, respectively. The phylogeographic relationships among the populations and broods within the species groups have not been clearly resolved. We analyzed 125 whole MG sequences from all broods and seven species within three species groups to ascertain the divergence history of the geographic and allochronic populations and their life cycles. Our mitogenomic phylogeny analysis clearly revealed that each of the three species groups had largely similar phylogeographic subdivisions (east, middle, and west) and demographic histories (rapid population expansion after the last glacial period). The mitogenomic phylogeny also partly resolved the brood diversification process, which could be explained by hypothetical temporary life cycle shifts, and showed that none of the 13- and 17-year species within the species groups was monophyletic, possibly due to gene flow between them. Our findings clearly reveal phylogeographic structures in the three Magicicada species groups, demonstrating the advantage of whole MG sequence data in phylogeographic studies.


Subject(s)
Biological Evolution , Genome, Mitochondrial , Hemiptera/genetics , Animals , Genetic Variation , Phylogeography , United States
6.
Zootaxa ; 4424(1): 1-64, 2018 May 28.
Article in English | MEDLINE | ID: mdl-30313477

ABSTRACT

A molecular phylogeny and a review of family-group classification are presented for 137 species (ca. 125 genera) of the insect family Cicadidae, the true cicadas, plus two species of hairy cicadas (Tettigarctidae) and two outgroup species from Cercopidae. Five genes, two of them mitochondrial, comprise the 4992 base-pair molecular dataset. Maximum-likelihood and Bayesian phylogenetic results are shown, including analyses to address potential base composition bias. Tettigarcta is confirmed as the sister-clade of the Cicadidae and support is found for three subfamilies identified in an earlier morphological cladistic analysis. A set of paraphyletic deep-level clades formed by African genera are together named as Tettigomyiinae n. stat. Taxonomic reassignments of genera and tribes are made where morphological examination confirms incorrect placements suggested by the molecular tree, and 11 new tribes are defined (Arenopsaltriini n. tribe, Durangonini n. tribe, Katoini n. tribe, Lacetasini n. tribe, Macrotristriini n. tribe, Malagasiini n. tribe, Nelcyndanini n. tribe, Pagiphorini n. tribe, Pictilini n. tribe, Psaltodini n. tribe, and Selymbriini n. tribe). Tribe Tacuini n. syn. is synonymized with Cryptotympanini, and Tryellina n. syn. is synonymized with an expanded Tribe Lamotialnini. Tribe Hyantiini n. syn. is synonymized with Fidicinini. Tribe Sinosenini is transferred to Cicadinae from Cicadettinae, Cicadatrini is moved to Cicadettinae from Cicadinae, and Ydiellini and Tettigomyiini are transferred to Tettigomyiinae n. stat from Cicadettinae. While the subfamily Cicadinae, historically defined by the presence of timbal covers, is weakly supported in the molecular tree, high taxonomic rank is not supported for several earlier clades based on unique morphology associated with sound production.


Subject(s)
Hemiptera , Phylogeny , Animals , Bayes Theorem , Insecta
7.
Commun Biol ; 1: 26, 2018.
Article in English | MEDLINE | ID: mdl-30271912

ABSTRACT

Periodical cicadas comprise three species groups containing three pairs of 13- and 17-year life cycle species showing parallel divergence, along with a more anciently diverged 13-year species (Magicicda tredecim). The mechanism and genetic basis of this parallel divergence is unknown. Here we use orthologous transcriptome sequences to explore the demographic processes and genomic evolution associated with parallel life cycle divergence. The three 13- and 17-year species pairs have similar demographic histories, and the two life cycles diverged 200,000-100,000 years ago. Interestingly, these life cycle differences have been maintained despite substantial gene flow between 13- and 17-year species within species groups, which is possible during co-emergences. Sequence divergence between 13- and 17-year species in each species group (excluding M. tredecim) is minimal, and we find no shared divergent single-nucleotide polymorphisms (SNPs) or loci associated with all instances of life cycle divergence. The two life cycles may be controlled by highly limited genomic differences.

8.
PeerJ ; 6: e5282, 2018.
Article in English | MEDLINE | ID: mdl-30083444

ABSTRACT

The periodical cicadas of North America (Magicicada spp.) are well-known for their long life cycles of 13 and 17 years and their mass synchronized emergences. Although periodical cicada life cycles are relatively strict, the biogeographic patterns of periodical cicada broods, or year-classes, indicate that they must undergo some degree of life cycle switching. We present a new map of periodical cicada Brood V, which emerged in 2016, and demonstrate that it consists of at least four distinct parts that span an area in the United States stretching from Ohio to Long Island. We discuss mtDNA haplotype variation in this brood in relation to other periodical cicada broods, noting that different parts of this brood appear to have different origins. We use this information to refine a hypothesis for the formation of periodical cicada broods by 1- and 4-year life cycle jumps.

9.
Sci Rep ; 8(1): 1432, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29362478

ABSTRACT

Male periodical cicadas (Magicicada spp.) infected with conidiospore-producing ("Stage I") infections of the entomopathogenic fungus Massospora cicadina exhibit precisely timed wing-flick signaling behavior normally seen only in sexually receptive female cicadas. Male wing-flicks attract copulation attempts from conspecific males in the chorus; close contact apparently spreads the infective conidiospores. In contrast, males with "Stage II" infections that produce resting spores that wait for the next cicada generation do not produce female-specific signals. We propose that these complex fungus-induced behavioral changes, which resemble apparently independently derived changes in other cicada-Massospora systems, represent a fungus "extended phenotype" that hijacks cicadas, turning them into vehicles for fungus transmission at the expense of the cicadas' own interests.


Subject(s)
Entomophthorales/physiology , Hemiptera/physiology , Sexual Behavior, Animal , Adaptation, Biological , Animals , Female , Hemiptera/microbiology , Male , Spores, Fungal/physiology
10.
Mol Ecol ; 25(21): 5543-5556, 2016 11.
Article in English | MEDLINE | ID: mdl-27661077

ABSTRACT

Life history evolution spurred by post-Pleistocene climatic change is hypothesized to be responsible for the present diversity in periodical cicadas (Magicicada), but the mechanism of life cycle change has been controversial. To understand the divergence process of 13-year and 17-year cicada life cycles, we studied genetic relationships between two synchronously emerging, parapatric 13-year periodical cicada species in the Decim group, Magicicada tredecim and M. neotredecim. The latter was hypothesized to be of hybrid origin or to have switched from a 17-year cycle via developmental plasticity. Phylogenetic analysis using restriction-site-associated DNA sequences for all Decim species and broods revealed that the 13-year M. tredecim lineage is genomically distinct from 17-year Magicicada septendecim but that 13-year M. neotredecim is not. We detected no significant introgression between M. tredecim and M. neotredecim/M. septendecim thus refuting the hypothesis that M. neotredecim are products of hybridization between M. tredecim and M. septendecim. Further, we found that introgressive hybridization is very rare or absent in the contact zone between the two 13-year species evidenced by segregation patterns in single nucleotide polymorphisms, mitochondrial lineage identity and head width and abdominal sternite colour phenotypes. Our study demonstrates that the two 13-year Decim species are of independent origin and nearly completely reproductively isolated. Combining our data with increasing observations of occasional life cycle change in part of a cohort (e.g. 4-year acceleration of emergence in 17-year species), we suggest a pivotal role for developmental plasticity in Magicicada life cycle evolution.


Subject(s)
Climate Change , Hemiptera/genetics , Hybridization, Genetic , Life Cycle Stages , Animals , Biological Evolution , DNA, Mitochondrial/genetics , Genomics , Hemiptera/classification , Phenotype , Phylogeny , Polymorphism, Single Nucleotide
11.
Syst Biol ; 65(1): 16-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26493828

ABSTRACT

Dated phylogenetic trees are important for studying mechanisms of diversification, and molecular clocks are important tools for studies of organisms lacking good fossil records. However, studies have begun to identify problems in molecular clock dates caused by uncertainty of the modeled molecular substitution process. Here we explore Bayesian relaxed-clock molecular dating while studying the biogeography of ca. 200 species from the global cicada tribe Cicadettini. Because the available fossils are few and uninformative, we calibrate our trees in part with a cytochrome oxidase I (COI) clock prior encompassing a range of literature estimates for arthropods. We show that tribe-level analyses calibrated solely with the COI clock recover extremely old dates that conflict with published estimates for two well-studied New Zealand subclades within Cicadettini. Additional subclade analyses suggest that COI relaxed-clock rates and maximum-likelihood branch lengths become inflated relative to EF-1[Formula: see text] intron and exon rates and branch lengths as clade age increases. We present corrected estimates derived from: (i) an extrapolated EF-1[Formula: see text] exon clock derived from COI-calibrated analysis within the largest New Zealand subclade; (ii) post hoc scaling of the tribe-level chronogram using results from subclade analyses; and (iii) exploitation of a geological calibration point associated with New Caledonia. We caution that considerable uncertainty is generated due to dependence of substitution estimates on both the taxon sample and the choice of model, including gamma category number and the choice of empirical versus estimated base frequencies. Our results suggest that diversification of the tribe Cicadettini commenced in the early- to mid-Cenozoic and continued with the development of open, arid habitats in Australia and worldwide. We find that Cicadettini is a rare example of a global terrestrial animal group with an Australasian origin, with all non-Australasian genera belonging to two distal clades. Within Australia, we show that Cicadettini is more widely distributed than any other cicada tribe, diverse in temperate, arid and monsoonal habitats, and nearly absent from rainforests. We comment on the taxonomic implications of our findings for thirteen cicada genera.


Subject(s)
Biodiversity , Evolution, Molecular , Hemiptera/classification , Phylogeny , Animal Distribution , Animals , Australasia , Electron Transport Complex IV/genetics , Hemiptera/genetics , Time
12.
Sci Rep ; 5: 14094, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26365061

ABSTRACT

Periodical cicadas (Magicicada spp.) in the USA are famous for their unique prime-numbered life cycles of 13 and 17 years and their nearly perfectly synchronized mass emergences. Because almost all known species of cicada are non-periodical, periodicity is assumed to be a derived state. A leading hypothesis for the evolution of periodicity in Magicicada implicates the decline in average temperature during glacial periods. During the evolution of periodicity, the determinant of maturation in ancestral cicadas is hypothesized to have switched from size dependence to time (period) dependence. The selection for the prime-numbered cycles should have taken place only after the fixation of periodicity. Here, we build an individual-based model of cicadas under conditions of climatic cooling to explore the fixation of periodicity. In our model, under cold environments, extremely long juvenile stages lead to extremely low adult densities, limiting mating opportunities and favouring the evolution of synchronized emergence. Our results indicate that these changes, which were triggered by glacial cooling, could have led to the fixation of periodicity in the non-periodical ancestors.


Subject(s)
Biological Evolution , Hemiptera/physiology , Models, Biological , Animals , Hemiptera/growth & development , Life Cycle Stages , Periodicity , Temperature
13.
Proc Natl Acad Sci U S A ; 110(17): 6919-24, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23509294

ABSTRACT

The evolution of 13- and 17-y periodical cicadas (Magicicada) is enigmatic because at any given location, up to three distinct species groups (Decim, Cassini, Decula) with synchronized life cycles are involved. Each species group is divided into one 13- and one 17-y species with the exception of the Decim group, which contains two 13-y species-13-y species are Magicicada tredecim, Magicicada neotredecim, Magicicada tredecassini, and Magicicada tredecula; and 17-y species are Magicicada septendecim, Magicicada cassini, and Magicicada septendecula. Here we show that the divergence leading to the present 13- and 17-y populations differs considerably among the species groups despite the fact that each group exhibits strikingly similar phylogeographic patterning. The earliest divergence of extant lineages occurred ∼4 Mya with one branch forming the Decim species group and the other subsequently splitting 2.5 Mya to form the Cassini and Decula species groups. The earliest split of extant lineages into 13- and 17-y life cycles occurred in the Decim lineage 0.5 Mya. All three species groups experienced at least one episode of life cycle divergence since the last glacial maximum. We hypothesize that despite independent origins, the three species groups achieved their current overlapping distributions because life-cycle synchronization of invading congeners to a dominant resident population enabled escape from predation and population persistence. The repeated life-cycle divergences supported by our data suggest the presence of a common genetic basis for the two life cycles in the three species groups.


Subject(s)
Biological Evolution , Genetic Speciation , Hemiptera/physiology , Life Cycle Stages/physiology , Phylogeny , Amplified Fragment Length Polymorphism Analysis , Animals , Base Sequence , Bayes Theorem , DNA, Mitochondrial/genetics , Demography , Haplotypes/genetics , Hemiptera/genetics , Life Cycle Stages/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA , Species Specificity , Time Factors , United States
14.
PLoS One ; 6(4): e18347, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21494682

ABSTRACT

Periodical cicadas (Magicicada spp.) in the USA are divided into three species groups (-decim, -cassini, -decula) of similar but distinct morphology and behavior. Each group contains at least one species with a 17-year life cycle and one with a 13-year cycle; each species is most closely related to one with the other cycle. One explanation for the apparent polyphyly of 13- and 17-year life cycles is that populations switch between the two cycles. Using a numerical model, we test the general feasibility of life cycle switching by the introduction of alleles for one cycle into populations of the other cycle. Our results suggest that fitness reductions at low population densities of mating individuals (the Allee effect) could play a role in life cycle switching. In our model, if the 13-year cycle is genetically dominant, a 17-year cycle population will switch to a 13-year cycle given the introduction of a few 13-year cycle alleles under a moderate Allee effect. We also show that under a weak Allee effect, different year-classes ("broods") with 17-year life cycles can be generated. Remarkably, the outcomes of our models depend only on the dominance relationships of the cycle alleles, irrespective of any fitness advantages.


Subject(s)
Genes, Insect/genetics , Hemiptera/growth & development , Hemiptera/genetics , Life Cycle Stages/genetics , Alleles , Animals , Genes, Dominant/genetics , Hybridization, Genetic , Periodicity , Time Factors
15.
Syst Biol ; 60(4): 482-502, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21471306

ABSTRACT

One of the major tenets of the modern synthesis is that genetic differentiation among subpopulations is translated over time into genetic differentiation among species. Phylogeographic exploration is therefore essential to the study of speciation because it can reveal the presence of subpopulations that may go on to become species or that may already represent cryptic species. Acoustic species-specific mating signals provide a significant advantage for the recognition of cryptic or incipient species. Because the majority of species do not have such easily recognized premating signals, data from acoustically signaling species can serve as a valuable heuristic tool. Acoustic signals are also convenient tools for recognizing hybridization events. Here, we demonstrate that evidence of hybridization in the form of intermediate song phenotypes is present in many contact zones between species of the New Zealand grass cicadas of the Kikihia muta species complex and that recurring mitochondrial DNA (mtDNA) introgression has created misleading patterns that make it difficult to identify certain taxa using song or mtDNA alone. In one case, introgression appears to have occurred between allopatric taxa by dispersal of introgressed populations of an intermediary species ("hybridization by proxy"). We also present a comparison of mtDNA-tree- and song-based taxonomies obtained for the K. muta complex. We find that 12 mtDNA candidate species are identified using shifts in phylogenetic branching rate found by a single-threshold mixed Yule-coalescent lineage model, while only 7 candidate species are identified using songs. Results from the Yule-coalescent model are dependent on factors such as the number of modeled thresholds and the inclusion of duplicate haplotypes. Genetic distances within song species reach a maximum at about 0.028 substitutions/site when likely cases of hybridization and introgression are excluded. Large genetic breaks or "gaps" are not observed between some northern (warmer climate) song clades, possibly because climate-induced bottlenecks have been less severe. These results support ongoing calls for multimarker genetic studies as well as "integrative taxonomy" that combines information from multiple character sources, including behavior, ecology, geography, and morphology.


Subject(s)
DNA, Mitochondrial/chemistry , Hemiptera/genetics , Hybridization, Genetic , Animals , Female , Genetic Speciation , Haplotypes , Hemiptera/classification , Hemiptera/physiology , Male , Models, Genetic , Molecular Sequence Data , New Zealand , Phenotype , Phylogeography , Reproduction , Sequence Alignment , Sexual Behavior, Animal , Social Isolation , Vocalization, Animal
16.
Proc Natl Acad Sci U S A ; 106(22): 8975-9, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19451640

ABSTRACT

Periodical cicadas are well known for their prime-numbered life cycles (17 and 13 years) and their mass periodical emergences. The origination and persistence of prime-numbered cycles are explained by the hybridization hypothesis on the basis of their lower likelihood of hybridization with other cycles. Recently, we showed by using an integer-based numerical model that prime-numbered cycles are indeed selected for among 10- to 20-year cycles. Here, we develop a real-number-based model to investigate the factors affecting the selection of prime-numbered cycles. We include an Allee effect in our model, such that a critical population size is set as an extinction threshold. We compare the real-number models with and without the Allee effect. The results show that in the presence of an Allee effect, prime-numbered life cycles are most likely to persist and to be selected under a wide range of extinction thresholds.


Subject(s)
Hemiptera/growth & development , Hemiptera/physiology , Life Cycle Stages , Selection, Genetic , Animals , Models, Biological , Population Dynamics
17.
Mol Phylogenet Evol ; 48(3): 1054-66, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18590969

ABSTRACT

Estimation of diversification rates in evolutionary radiations requires a complete accounting of cryptic species diversity. The rapidly evolving songs of acoustically signaling insects make them good model organisms for such studies. This paper examines the timing of diversification of a large (30 taxon) group of New Zealand cicadas (genus Kikihia Dugdale). We use Bayesian relaxed-clock methods and phylogenetic trees based on nuclear and mitochondrial DNA data, and we apply alternative combinations of evolutionary rate priors and geological calibrations. The extant Kikihia taxa began to diversify near the Miocene/Pliocene boundary around the time of increased mountain-building, and both the mitochondrial and nuclear-gene trees confirm early splits of lineages currently represented by lowland forest-dwelling taxa. Most lineages originated in the Pleistocene, and sustained diversification occurred rapidly at over 0.5 lineages/my, a rate comparable to that of the Hawaiian silverswords. Diversification rate tests suggest an increase in the early to mid-Pliocene, followed by constant diversification from the Late Pliocene onward. No descendants of the many Pleistocene-age splits have evolved the ability to coexist in sympatry, and, where they do come into contact, hybrid zones have been documented based on acoustic and DNA evidence. In contrast, lineages separated in time by approximately 2Myr often overlap in distribution with no evidence of hybridization. This suggests that at least 2Myr has been required to achieve the level of divergence required for reproductive isolation.


Subject(s)
DNA, Mitochondrial/genetics , Hemiptera/genetics , Acoustics , Animals , Biological Evolution , Evolution, Molecular , Female , Genetic Variation , Insecta , Male , Models, Genetic , New Zealand , Phylogeny , Sequence Analysis, DNA , Sexual Behavior, Animal
18.
PLoS One ; 2(9): e892, 2007 Sep 12.
Article in English | MEDLINE | ID: mdl-17849021

ABSTRACT

Mitochondrial inheritance is generally assumed to be maternal. However, there is increasing evidence of exceptions to this rule, especially in hybrid crosses. In these cases, mitochondria are also inherited paternally, so "paternal leakage" of mitochondria occurs. It is important to understand these exceptions better, since they potentially complicate or invalidate studies that make use of mitochondrial markers. We surveyed F1 offspring of experimental hybrid crosses of the 17-year periodical cicadas Magicicada septendecim, M. septendecula, and M. cassini for the presence of paternal mitochondrial markers at various times during development (1-day eggs; 3-, 6-, 9-week eggs; 16-month old 1st and 2nd instar nymphs). We found evidence of paternal leakage in both reciprocal hybrid crosses in all of these samples. The relative difficulty of detecting paternal mtDNA in the youngest eggs and ease of detecting leakage in older eggs and in nymphs suggests that paternal mitochondria proliferate as the eggs develop. Our data support recent theoretical predictions that paternal leakage may be more common than previously estimated.


Subject(s)
Hemiptera/genetics , Animals , Base Sequence , DNA/genetics , DNA Primers , Female , Hemiptera/physiology , Hybridization, Genetic , Male , Polymerase Chain Reaction , Sexual Behavior, Animal
19.
J Evol Biol ; 19(3): 855-68, 2006 May.
Article in English | MEDLINE | ID: mdl-16674582

ABSTRACT

Selection against costly reproductive interactions can lead to reproductive character displacement (RCD). We use information from patterns of displacement and inferences about predisplacement character states to investigate causes of RCD in periodical cicadas. The 13-year periodical cicada Magicicada neotredecim exhibits RCD and strong reproductive isolation in sympatry with a closely related 13-year species, Magicicada tredecim. Displacement is asymmetrical, because no corresponding pattern of character displacement exists within M. tredecim. Results from playback and hybridization experiments strongly suggest that sexual interactions between members of these species were possible at initial contact. Given these patterns, we evaluate potential sources of selection for displacement. One possible source is 'acoustical interference', or mate-location inefficiencies caused by the presence of heterospecifics. Acoustical interference combined with the species-specificity of song pitch and preference appears to predict the observed asymmetrical pattern of RCD in Magicicada. However, acoustical interference does not appear to be a complete explanation for displacement in Magicicada, because our experiments suggest a significant potential for direct sexual interactions between these species before displacement. Another possible source of selection for displacement is hybrid failure. We evaluate the attractiveness of inferred hybrid mating signals, and we examine the viability of hybrid eggs. Neither of these shows strong evidence of hybrid inferiority. We conclude by presenting a model of hybrid failure related to life cycle differences in Magicicada.


Subject(s)
Hemiptera/physiology , Reproduction/physiology , Animals , Behavior, Animal , DNA Primers , Environment , Female , Genetic Variation , Hemiptera/genetics , Hybridization, Genetic , Male , Ovum/physiology , Selection, Genetic , Social Behavior , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...