Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 827: 154296, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35257773

ABSTRACT

Piping is an erosive process in which subsurface soil particles are removed, causing the formation of underground tunnels. A variety of physical and chemical factors control pipe formation. This study focused on hydrophysical soil properties to propose a mechanism to explain the piping process in soils in a tropical climate in Brazil. We observed two levels of pipes in the field: shallow pipes that form at the transition between E/B horizons (~0.30-0.45 m) and deep pipes that form between different Bt horizons (~1.50 m). We collected disturbed soil samples to determine the soil particle distribution and organic matter content, and undisturbed soil samples were collected to determine the hydrophysical attributes and for soil micromorphometric analysis. We found that the study area was prone to soil collapse and that physical properties controlled the process. The results showed a textural and structural gradient between the E and Bt horizons, where the Bt horizons presented a higher clay content and a well-developed structure (strong sub-angular blocks) compared to the essentially sandy E horizons (single grain). This gradient changed the soil porosity from macroporosity in the E horizon to microporosity in the Bt horizon, particularly represented by the decrease in complex pores. For deeper pipes, soil attribute gradients were found between different Bt horizons. A modification in the structure grade from moderate to weakly moderate, soil water retention curves with different slopes and shapes, and an increase in porosity correlating with soil depth, reflect an increase in larger complex pores. These changes in structure, texture, porosity, and pore type reflect the soil's hydraulic conductivity in the transition of different horizons, which can promote the accumulation and temporary stagnation of water at the top of the Bt horizons, and trigger the piping process when the lateral water flow reaches the critical flow velocity.


Subject(s)
Soil Pollutants , Soil , Clay , Sand , Soil/chemistry , Soil Pollutants/analysis , Water/analysis
2.
R Soc Open Sci ; 8(3): 201584, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33959328

ABSTRACT

Soil ecosystem service (SES) approaches evidence the importance of soil for human well-being, contribute to improving dialogue between science and decision-making and encourage the translation of scientific results into public policies. Herein, through systematic review, we assess the state of the art of SES approaches in tropical regions. Through this review, 41 publications were identified; while most of these studies considered SES, a lack of a consistent framework to define SES was apparent. Most studies measured soil natural capital and processes, while only three studies undertook monetary valuation. Although the number of publications increased (from 1 to 41), between 2001 and 2019, the total number of publications for tropical regions is still small. Countries with the largest number of publications were Brazil (n = 8), Colombia (n = 6) and Mexico (n = 4). This observation emphasizes an important knowledge gap pertaining to SES approaches and their link to tropical regions. With global momentum behind SES approaches, there is an opportunity to integrate SES approaches into policy and practice in tropical regions. The use of SES evaluation tools in tropical regions could transform how land use decisions are informed, mitigating soil degradation and protecting the ecosystems that soil underpins.

5.
An. acad. bras. ciênc ; 81(1): 151-161, Mar. 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-506860

ABSTRACT

Soil pore structure characterization using 2-D image analysis constitutes a simple method to obtain essential information related to soil porosity and pore size distribution (PSD). Such information is important to infer on soil quality, which is related to soil structure and transport processes inside the soil. Most of the time soils are submitted to wetting and drying cycles (W-D), which can cause important changes in soils with damaged structures. This report uses 2-D image analysis to evaluate possible modifications induced by W-D cycles on the structure of damaged soil samples. Samples of three tropical soils (Geric Ferralsol, GF; Eutric Nitosol, EN; and Rhodic Ferralsol, RF) were submitted to three treatments: 0WD, the control treatment in which samples were not submitted to any W-D cycle; 3WD and 9WD with samples submitted to 3 and 9 consecutive W-D cycles, respectively. It was observed that W-D cycles produced significant changes in large irregular pores of the GF and RF soils, and in rounded pores of the EN soil. Nevertheless, important changes in smaller pores (35, 75, and 150 µm) were also observed for all soils. As an overall consideration, it can be said that the use of image analysis helped to explain important changes in soil pore systems (shape, number, and size distribution) as consequence of W-D cycles.


A caracterização da estrutura do solo usando a análise de imagens bidimensionais (2-D) constitui um método simples na obtenção de informações essenciais relacionadas com a porosidade do solo e a distribuição do tamanho de poros. Tal informação é importante para obter dados sobre a qualidade do solo, a qual está diretamente ligada à sua estrutura e aos processos de transporte que ocorrem no seu interior. Na maior parte do tempo os solos são submetidos a vários ciclos de umedecimento ("wetting") e secamento ("drying") (W-D) que podem causar importantes mudanças em solos que possuem estruturas danificadas. Neste estudo foi usada a análise de imagens em 2-D na avaliação de possíveis modificações devido a vários ciclos de W-D na estrutura de amostras de solo danificadas.Três solos diferentes em textura (Latossolo vermelho-amarelo distrófico - LVAd; Nitossolo vermelho eutrófico - NVe, Latossolo vermelho distrófico - LVd) foram submetidos a três diferentes tratamentos: 0WD, amostras controle não submetidas a nenhum ciclo de W-D; 3WD e 9WD, amostras submetidas a 3 e 9 ciclos consecutivos de W-D, respectivamente. Foi observado que os ciclos de W-D produziram mudanças significativas nos poros grandes irregulares dos solos LVAd e LVd e nos poros arredondados do NVe. Importantes mudanças nos poros de 35 até 150 µm foram observadas para todos os solos estudados. A partir dos resultados obtidos pode ser dito que o uso da análise de imagens auxiliou com sucesso na explicação de variações no sistema poroso (formato, número e distribuição de tamanho dos poros) devido aos ciclos de W-D para todos os solos analisados.

SELECTION OF CITATIONS
SEARCH DETAIL
...