Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Insects ; 14(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37367311

ABSTRACT

The salivary gland of the black field cricket, Teleogryllus commodus Walker changed size between being starved and fed. Crickets without access to food for 72 h showed a reduction in both wet and dry mass of the glands compared with the glands from continuously fed animals at 72 h. Glands returned to size following ingestion within 10 min. Salivary glands of starved crickets (72 h) were incubated in saline containing either serotonin (5-HT) or dopamine (DA). Glands increased to pre-starvation size after 1 h incubation in situ with either 10-4 moles L-1 5-HT or 10-4 moles L-1 DA, although lower concentrations (10-5 moles L-1) did not affect gland size. From immunohistochemistry, amines appeared to shift from zymogen cells during starvation to parietal cells following feeding. High-performance liquid chromatography showed that serotonin concentration is higher than dopamine in the salivary gland removed from starved and fed crickets, but the quantity of these compounds was not dependent upon feeding state; the amine quantities increased as gland size increased. Further work is necessary to determine what might be the stimulus for gland growth and if dopamine and serotonin play a role in the stimulation of salivary gland growth after a period of starvation.

2.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675057

ABSTRACT

Plants can respond to insects that feed with stylet mouthparts using various processes that are initiated via the salicylic acid metabolic pathway. In Australia, scale insects of the genus Parthenolecanium can cause economic damage to grapevines as they feed on the vines and produce honeydew as a waste by-product, which supports the growth of black sooty mould on fruit and leaves, potentially affecting the plant growth and yield. Using rootlings of Sauvignon Blanc (SB, resistant) and Chardonnay (Char, susceptible), the growth and production of volatile organic compounds (VOCs) following exposure to scale insect infestations were measured under controlled greenhouse conditions. At harvest, the numbers of scale insects per five leaves were higher on plants infested at the start of the study compared with the control plants. Infested SB had increased dry root and shoot mass compared with the SB control, which was also the case with Char (control and infested). Leaf volatiles differed between cultivars in response to scale infestation. Benzyl alcohol decreased among infested SB plants compared with the other treatments. A change in the salicylic acid pathway as indicated by the change in benzyl alcohol may cause the increased growth in SB associated with the increased scale insect infestation.


Subject(s)
Hemiptera , Vitis , Animals , Vitis/metabolism , Hemiptera/physiology , Fungi , Metabolic Networks and Pathways , Benzyl Alcohols/metabolism
3.
J Insect Sci ; 20(4)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32697826

ABSTRACT

We describe a pair of labial gland lobes on either side of the retrocerebral complex in the head of the Australian black field cricket, Teleogryllus commodus Walker. As the retrocerebral complex includes the corpora cardiaca and corpora allata, hormones secreted by these glands can be absorbed by these lobes. These lobes of the labial gland are connected to the thoracic lobes via a relatively long duct that enters the main duct draining the thoracic lobes. Measurement of the flow rate of dye from head to thorax in the ducts is rapid, suggesting that these glands may serve as a transport system into the thoracic region. Both serotonin and adipokinetic hormone are shown to be present in the lobes near the retrocerebral complex and the ducts of the thoracic lobes, but whether this connection between the head and thorax acts as a hormone transporter is still unclear.


Subject(s)
Gryllidae/anatomy & histology , Animals , Endocrine Glands/anatomy & histology , Gryllidae/metabolism , Head/anatomy & histology , Insect Hormones/metabolism
5.
J Phys Chem A ; 117(1): 153-9, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23237388

ABSTRACT

Thin-film water ice samples are doped with reactive species, such as OH and HO(2) and both singlet and triplet O atoms, which are produced in a discharge, in order to trace the reactions that form oxidants such as H(2)O(2) and O(2), in relation to the icy surfaces of satellites in the outer solar system. The present experiments show that, while reactions of OH formed in the discharge produce H(2)O(2), the majority of H(2)O(2) is formed via other pathways, with reactions of singlet O atoms being the most likely candidate. Strong evidence comes from thermal processing of the ices and using the matrix-isolation technique to quantify the OH abundance in the discharge, which is far below the required amount to account for the relatively high H(2)O(2) abundances measured. Reactions of HO(2) are also of possible significance but appear to be less dominant in the formation of H(2)O(2) than singlet O.

6.
Phys Chem Chem Phys ; 14(10): 3444-9, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22307542

ABSTRACT

Matrix isolation FTIR experiments have shown that methanol is a major product when argon gas doped with water and methane is exposed to an electrical discharge and condensed to a solid matrix at 11 K. Experiments with (2)H, (17)O and (18)O-labeled isotopologues show the mechanism for the methanol production is likely to be insertion of an excited oxygen atom in the (1)D state into a C-H bond of a methane molecule. In light of these experiments, the possibility of oxygen atom insertion into methane should be considered as a possible mechanism for the production of methanol in interstellar ices.


Subject(s)
Methane/chemistry , Methanol/chemical synthesis , Water/chemistry , Argon/chemistry , Electricity , Methanol/chemistry , Spectroscopy, Fourier Transform Infrared
7.
J Insect Physiol ; 56(12): 1958-65, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20813112

ABSTRACT

Larvae of Manduca sexta are parasitised by the braconid wasp, Cotesia congregata. In this study we examined whether contraction activity of the semi-isolated foregut was affected by parasitism. Parasitised larvae fed significantly less compared with unparasitised control larvae, therefore starved unparasitised animals were used as controls. Rate and force of foregut contraction in control caterpillars significantly increased with days of starvation. However, only contraction force in foreguts of parasitised larvae increased over time following infection. The presence of food in the foregut of caterpillars starved 7 days suggested that food moved anteriorly from the midgut and that contraction became antiperistaltic, but only normal peristalsis occurred in parasitised caterpillars. Rate and force of gut contractions may be controlled independently and starvation did not truly mimic the effects of the parasitoids. Dissection of caterpillars with emerged wasps indicated that 47% had a single wasp larva wedged between the brain and foregut. Removal of this wasp caused an increased rate of foregut contraction of the caterpillar. Brain removal resulted in an increased rate of foregut contraction only for unparasitised insects. Sectioning of the recurrent nerve temporarily eliminated foregut contraction, but the contraction began again in 250 s in parasitised caterpillars prior to wasp emergence, compared with over 500 s for unparasitised controls and parasitised caterpillars following wasp emergence.


Subject(s)
Digestive System/physiopathology , Food Deprivation/physiology , Manduca/physiology , Manduca/parasitology , Muscle Contraction/physiology , Animals , Digestive System/parasitology , Larva/parasitology , Larva/physiology , Oligopeptides/pharmacology , Sodium Chloride/pharmacology , Spectrum Analysis , Statistics, Nonparametric
8.
Comp Biochem Physiol C Toxicol Pharmacol ; 151(3): 298-302, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20005975

ABSTRACT

Opioid peptides have been implicated in regulation of feeding in invertebrates. Studies have suggested that receptors for opioids are present in cockroaches and that these receptors play roles in affecting both behaviour and feeding. We examined the effect of micro, delta, and kappa opioid receptor agonists and antagonists on feeding, mass changes and activity in the cockroach, Periplaneta americana. The kappa antagonist, nor-binaltorphimine, significantly increased food intake, while naltrexone (general antagonist) and naloxonazine (micro antagonist) both reduced feeding. A large mass loss was observed in cockroaches treated with nor-binaltorphimine, despite the increased food intake. Males did not lose as much mass during the 3h as females, although drug treatment did have some effect on the loss. Time of activity (%) was not influenced by any drug. Water loss experiments suggested that nor-binaltorphimine increased water loss, accounting for the mass loss despite the increased feeding. We suggest that two populations of opioid receptors are present as previously reported, with one affecting feeding and the other involved with evaporative water loss.


Subject(s)
Analgesics, Opioid/pharmacology , Behavior, Animal/physiology , Cockroaches/physiology , Eating/physiology , Animals , Female , Male , Naloxone/analogs & derivatives , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, mu/antagonists & inhibitors , Water Loss, Insensible/drug effects
9.
J Insect Physiol ; 54(2): 472-80, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18178217

ABSTRACT

Patterns of gas exchange among terrestrial arthropods are highly variable from continuous to discontinuous with discretely partitioned phases. The underlying initiation and co-ordination of these patterns is relatively poorly understood. Here we present a novel method for the simultaneous measurement of central nervous system (CNS) activity of the metathoracic ganglion and VCO(2) in medium to large sized live terrestrial arthropods. Using Periplaneta americana at four oxygen levels (40%, 21%, 10% and 2% at 25 degrees C; n=6 per treatment), we present minimally invasive visualization of nervous output relative to typical resting discontinuous gas exchange (DGE) data for the first time. DGE was maintained when cockroaches were exposed to hyperoxia or moderate hypoxia, but was lost in severe hypoxia. CNS activity was manifested in three signal types: large CNS output coinciding with peak CO(2) production during a burst, moderate CNS output coinciding with CO(2) sawtoothing and fluttering, and minimal CNS activity during the closed phase of DGE in normoxia. Large and moderate CNS outputs were associated with observed abdominal pumping and congruent CO(2) peaks. At 10% oxygen, VCO(2) was significantly elevated during the inter-burst period in association with almost constant moderate CNS output between the periodic large CNS output. At 2% oxygen, DGE and large CNS output are lost to continuous CO(2) release and largely continuous moderate CNS output. As previously reported for this species, a central pattern generator for ventilation in the metathoracic ganglion is supported and we infer the presence of localized oxygen chemoreceptors based on clear CNS response to a change in oxygen tension.


Subject(s)
Central Nervous System/physiology , Periplaneta/physiology , Pulmonary Gas Exchange/physiology , Animals , Oxygen , Respiratory Physiological Phenomena
10.
Article in English | MEDLINE | ID: mdl-18158274

ABSTRACT

Phosphine is used for fumigating stored commodities, however an understanding of the physiological response to phosphine in insects is limited. Here we show how the central pattern generator for ventilation in the central nervous system (CNS) responds to phosphine and influences normal resting gas exchange. Using the American cockroach, Periplaneta americana, that perform discontinuous gas exchange (DGE) at rest, we simultaneously measure ventilatory nervous output from the intact CNS, VCO(2) and water loss from live specimens. Exposure to 800 ppm phosphine at 25 degrees C for 2 h (n=13) during recording did not cause any mortality or obvious sub-lethal effects. Within 60 s of introducing phosphine into the air flow, all animals showed a distinct CNS response accompanied by a burst release of CO(2). The initial ventilatory response to phosphine displaced DGE and was typically followed by low, stable and continuous CO(2) output. CNS output was highest and most orderly under normoxic conditions during DGE. Phosphine caused a series of ventilatory CNS spikes preceding almost complete cessation of CNS output. Minimal CNS output was maintained during the 2 h normoxic recovery period and DGE was not reinstated. VCO(2) was slightly reduced and water loss significantly lower during the recovery period compared with those rates prior to phosphine exposure. A phosphine narcosis effect is rejected based on animals remaining alert at all times during exposure.


Subject(s)
Central Nervous System/drug effects , Insecticides/pharmacology , Periplaneta/drug effects , Phosphines/pharmacology , Pulmonary Gas Exchange/drug effects , Respiratory System/innervation , Animals , Biological Clocks/drug effects , Carbon Dioxide/metabolism , Movement/drug effects , Periplaneta/metabolism , Respiratory Mechanics/drug effects , Time Factors , Water Loss, Insensible/drug effects
11.
Article in English | MEDLINE | ID: mdl-17331767

ABSTRACT

Water loss and VCO(2) relative to temperature and oxygen tension was investigated in a log-dwelling onychophoran (Euperipatoides rowelli) and a sympatric, un-described millipede species using flow-through respirometry. Onychophorans possess a tracheal system featuring permanently open spiracles. Total body water loss was consistently very high in E. rowelli and there was a positive correlation with increasing temperature. CO(2) output was continuous, increasing with higher temperatures and decreasing under lower oxygen concentrations. The millipede which has occludible spiracles also showed continuous gas exchange; however water loss was up to an order of magnitude lower than E. rowelli. An ability to survive under hypoxia is apparent for both species and corresponds with reports of hypoxic conditions within rotting logs. The rotting log habitat common to both taxa is characterized by high relative humidity and typically cool temperatures that approach 0 degrees C at night in winter. Consequently, dispersal through the higher temperatures and lower humidity of the exposed and dry understorey between suitable habitat may be hazardous for E. rowelli due to high desiccation susceptibility.


Subject(s)
Carbon Monoxide/metabolism , Ecosystem , Invertebrates/metabolism , Oxygen/metabolism , Temperature , Water/metabolism , Animals , Behavior, Animal , Dehydration , Humidity
12.
J Insect Physiol ; 53(5): 497-504, 2007 May.
Article in English | MEDLINE | ID: mdl-17374539

ABSTRACT

The giant burrowing cockroach, Macropanesthia rhinoceros, is endemic to north-eastern Australia and excavates a permanent burrow up to 1m deep into soil. Using flow-through respirometry, we investigated gas exchange and water loss at three different oxygen tensions (21%, 10% and 2% at 20 degrees C) and temperatures (10, 20 and 30 degrees C at 21% oxygen). M. rhinoceros employ cyclic gas exchange (CGE) making the species by far the largest insect known to engage in discontinuous ventilation. CGE featured rhythmic bursts of CO(2) dispersed among inter-burst periods of reduced output. CGE was most commonly observed at 20 degrees C and degraded at <10% oxygen. Mild hypoxia (10% oxygen) resulted in a lengthening of the burst period by approximately two-fold; this result is complementary to oxygen consumption data that suggests that the burst period is important in oxygen uptake. When exposed to severe hypoxia (2% oxygen), CGE was degraded to a more erratic continuous pattern. Also, during severe hypoxia, total water loss increased significantly, although CO(2) release was maintained at the same level as in 21% oxygen. During CGE, an increase in temperature from 10 to 20 degrees C caused both water loss and CO(2) output to double; from 20 to 30 degrees C, CO(2) output again doubled but water loss increased by only 31%.


Subject(s)
Cockroaches/physiology , Oxygen/physiology , Respiratory Transport/physiology , Temperature , Animals , Carbon Dioxide/metabolism , Cockroaches/metabolism , Female , Male , Movement/physiology , Oxygen/metabolism , Water/metabolism
13.
J Phys Chem A ; 110(26): 7985-8, 2006 Jul 06.
Article in English | MEDLINE | ID: mdl-16805481

ABSTRACT

Infrared spectroscopy has been used to detect HO(2) and HO(3) radicals in H(2)O + O(2) ice mixtures irradiated with 0.8 MeV protons. In these experiments, HO(2) was formed by the addition of an H atom to O(2) and HO(3) was formed by a similar addition of H to O(3). The band positions observed for HO(2) and HO(3) in H(2)O-ice are 1142 and 1259 cm(-1), respectively, and these assignments were confirmed with (18)O(2). HO(2) and HO(3) were also observed in irradiated H(2)O + O(3) ice mixtures, as well as in irradiated H(2)O(2) ice. The astronomical relevance of these laboratory measurements is discussed.

14.
J Phys Chem A ; 109(19): 4274-9, 2005 May 19.
Article in English | MEDLINE | ID: mdl-16833756

ABSTRACT

Theoretical studies of the H2O.O2 complex have been carried out over the past decade, but the complex has not previously been experimentally identified. We have assigned IR vibrations from an H2O.O2 complex in an inert rare gas matrix. This identification is based upon theoretical calculations and concentration dependent behavior of absorption bands observed upon co-deposition of H2O and O2 in argon matrixes at 11.5 +/- 0.5 K. To aid assignment, we have used a harmonically coupled anharmonic oscillator local mode model with an ab initio calculated dipole moment function to calculate the OH-stretching and HOH-bending frequencies and intensities in the complex. The high abundance of H2O and O2 makes the H2O.O2 complex likely to be significant in atmospheric and astrophysical chemistry.

15.
J Am Chem Soc ; 125(20): 6048-9, 2003 May 21.
Article in English | MEDLINE | ID: mdl-12785822

ABSTRACT

We have measured the infrared spectrum of H2O.HO in argon matrices at 11.5 +/- 0.5 K. We have also calculated the vibrational frequencies and intensities of the H2O.HO complex. As a result of these measurements and calculations, we have assigned a previously unassigned absorption band at 3442.1 cm-1 to the OH stretch in the radical complexed to the water molecule. This absorption originates from a complex that is situated in a different site within the argon matrix to those absorptions already assigned to this vibration at 3452.2 and 3428.0 cm-1. We observe a decrease in intensity of the OH radical stretching vibration of the H2O.HO complex upon isotopic substitution of D for H that agrees well with our calculations.


Subject(s)
Hydroxyl Radical/chemistry , Water/chemistry , Models, Molecular , Spectrophotometry, Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...