Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(38): eadi8809, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37729401

ABSTRACT

High-entropy oxides (HEOs) have aroused growing interest due to fundamental questions relating to their structure formation, phase stability, and the interplay between configurational disorder and physical and chemical properties. Introducing Fe(II) and Mn(II) into a rocksalt HEO is considered challenging, as theoretical analysis suggests that they are unstable in this structure under ambient conditions. Here, we develop a bottom-up method for synthesizing Mn- and Fe-containing rocksalt HEO (FeO-HEO). We present a comprehensive investigation of its crystal structure and the random cation-site occupancy. We show the improved structural robustness of this FeO-HEO and verify the viability of an oxygen sublattice as a buffer layer. Compositional analysis reveals the valence and spin state of the iron species. We further report the antiferromagnetic order of this FeO-HEO below the transition temperature ~218 K and predict the conditions of phase stability of Mn- and Fe-containing HEOs. Our results provide fresh insights into the design and property tailoring of emerging classes of HEOs.

2.
Inorg Chem ; 62(40): 16464-16474, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37747902

ABSTRACT

α-Sb2O4 (cervantite) and ß-Sb2O4 (clinocervantite) are mixed valence compounds with equal proportions of SbIII and SbV as represented in the formula SbIIISbVO4. Their structure and properties can be difficult to calculate owing to the SbIII lone-pair electrons. Here, we present a study of the lattice dynamics and vibrational properties using a combination of inelastic neutron scattering, Mössbauer spectroscopy, nuclear inelastic scattering, and density functional theory (DFT) calculations. DFT calculations that account for lone-pair electrons match the experimental densities of phonon states. Mössbauer spectroscopy reveals the ß phase to be significantly harder than the α phase. Calculations with O vacancies reveal the possibility for nonstoichiometric proportions of SbIII and SbV in both phases. An open question is what drives the stability of the α phase over the ß phase, as the latter shows pronounced kinetic stability and lower symmetry despite being in the high-temperature phase. Since the vibrational entropy difference is small, it is unlikely to stabilize the α phase. Our results suggest that the α phase is more stable only because the material is not fully stoichiometric.

3.
ACS Appl Mater Interfaces ; 14(9): 11962-11970, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35226475

ABSTRACT

Relaxor ferroelectrics are important in technological applications due to strong electromechanical response, energy storage capacity, electrocaloric effect, and pyroelectric energy conversion properties. Current efforts to discover and design materials in this class generally rely on substitutional doping as slight changes to local compositional order can significantly affect the Curie temperature, morphotropic phase boundary, and electromechanical responses. In this work, we demonstrate that moving to the strong limit of compositional complexity in an ABO3 perovskite allows stabilization of relaxor responses that do not rely on a single narrow phase transition region. Entropy-assisted synthesis approaches are utilized to synthesize single-crystal Ba(Ti0.2Sn0.2Zr0.2Hf0.2Nb0.2)O3 [Ba(5B)O] films. The high levels of configurational disorder present in this system are found to influence dielectric relaxation, phase transitions, nanopolar domain formation, and Curie temperature. Temperature-dependent dielectric, Raman spectroscopy, and second-harmonic generation measurements reveal multiple phase transitions, a high Curie temperature of 570 K, and the relaxor ferroelectric nature of Ba(5B)O films. The first-principles theory calculations are used to predict possible combinations of cations to design relaxor ferroelectrics and quantify the relative feasibility of synthesizing these highly disordered single-phase perovskite systems. The ability to stabilize single-phase perovskites with various cations on the B-sites offers possibilities for designing high-performance relaxor ferroelectric materials for piezoelectric, pyroelectric, and electrocaloric applications.

4.
Sci Adv ; 7(42): eabk2451, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34652933

ABSTRACT

Tough adhesives provide resistance against high debonding forces, and these adhesives are difficult to design because of the simultaneous requirement of strength and ductility. Here, we report a design of tough reversible/recyclable adhesive materials enabled by incorporating dynamic covalent bonds of boronic ester into commodity triblock thermoplastic elastomers that reversibly bind with various fillers and substrates. The spectroscopic measurements and density functional theory calculations unveil versatile dynamic covalent binding of boronic ester with various hydroxy-terminated surfaces such as silica nanoparticles, aluminum, steel, and glass. The designed multiphase material exhibits exceptionally high adhesion strength and work of debonding with a rebonding capability, as well as outstanding mechanical, thermal, and chemical resistance properties. Bonding and debonding at the interfaces dictate hybrid material properties, and this revelation of tailored dynamic interactions with multiple interfaces will open up a new design of adhesives and hybrid materials.

5.
Inorg Chem ; 60(19): 14831-14843, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34533946

ABSTRACT

The performance of single-ion conductors is highly sensitive to the material's defect chemistry. Tuning these defects is limited for solid-state reactions as they occur at particle-particle interfaces, which provide a complex evolving energy landscape for atomic rearrangement and product formation. In this report, we investigate the (1) order of addition and (2) lithium precursor decomposition temperature and their effect on the synthesis and grain boundary conductivity of the perovskite lithium lanthanum titanium oxide (LLTO). We use an intimately mixed sol-gel, a solid-state reaction of Li precursor + La2O3 + TiO2, and Li precursor + amorphous La0.57TiOx as different chemical routes to change the way in which the elements are brought together. The results show that the perovskite can accommodate a wide range of Li deficiencies (upward of 50%) while maintaining the tetragonal LLTO structure, indicating that X-ray diffraction (XRD) is insufficient to fully characterize the chemical nature of the product (i.e., Li-deficient LLTO may behave differently than stoichiometric LLTO). Variations in the relative intensities of different reflections in XRD suggest variations in the La ordering within the crystal structure between synthesis methods. Furthermore, the choice of the precursor and the order of addition of the reactants lower the time required to form a pure phase. Density functional theory calculations of the formation energy of possible reaction intermediates support the hypothesis that a greater thermodynamic driving force to form LLTO leads to a greater LLTO yield. The retention of lithium is correlated with the thermal decomposition temperature of the Li precursor and the starting material mixing strategy. Taking the results together suggests that cations that share a site with Li should be mixed early to avoid ordering. Such cation ordering inhibits Li motion, leading to higher Li ion resistance.

6.
J Phys Chem A ; 125(18): 3978-3985, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33724850

ABSTRACT

The mercury dihalides show a remarkable diversity in the structural preferences in their minimum energy structure types, spanning molecular to strongly bound ionic solids. A challenge in the development of density functional methods for extended systems is to arrive at strategies that serve equally well such a broad range of bonding modes or structural preferences. The chemical bonding and the stabilities of mercury dihalides and the general utility and reliability of the van der Waals density functional with C09 exchange (vdW-DF-C09) in predicting or describing the energetics and structural preferences in these metal dihalides is examined. We show that, in contrast with the uncorrected generalized gradient approximation of the Perdew-Burke-Erzenhoff (PBE) exchange-correlation functional, qualitative and quantitative patterns in the bonding of the mercury dihalide solids are well reproduced with vdW-DF-C09 for the full series of HgX2 systems for X = F, Cl, Br, and I. The possible existence of a low-temperature cotunnite polymorph for HgF2 and PbF2 is posited.

7.
J Am Chem Soc ; 143(11): 4193-4204, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33352040

ABSTRACT

High-entropy oxides (HEOs) have attracted great interest in diverse fields because of their inherent opportunities to tailor and combine materials functionalities. The control of local order/disorder in the class is by extension a grand challenge toward realizing their vast potential. Here we report the first examples of pyrochlore HEOs with five M-site cations, for Nd2M2O7, in which the local structure has been investigated by neutron diffraction and pair distribution function (PDF) analysis. The average structure of the pyrochlores is found to be orthorhombic Imma, in agreement with radius-ratio rules governing the structural archetype. The computed PDFs from density functional theory relaxed special quasirandom structure models are compared with real space PDFs in this work to evaluate M-site order/disorder. Reverse Monte Carlo combined with ab initio molecular dynamics and Metropolis Monte Carlo simulations demonstrates that Nd2(Ta0.2Sc0.2Sn0.2Hf0.2Zr0.2)2O7 is synthesized with its M-site local to nanoscale order highly randomized/disordered, while Nd2(Ti0.2Nb0.2Sn0.2Hf0.2Zr0.2)2O7+x exhibits a strong distortion of the TiO6 octahedron and small degree of Ti chemical short-range order (SRO) on the subnanometer scale. Calculations suggest that this may be intrinsic, energetically favored SRO rather than due to sample processing. These results offer an important demonstration that the engineered variation of participating ions in HEOs, even among those with very similar radii, provides richly diverse opportunities to control local order/disorder motifs-and therefore materials properties for future designs. This work also hints at the exquisite level of detail that may be needed in computational and experimental data analysis to guide structure-property tuning in the emerging HEO materials class.

8.
J Phys Chem A ; 124(47): 9867-9876, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33190498

ABSTRACT

The van der Waals interaction is of foundational importance for a wide variety of physical systems. In particular, van der Waals forces lie at the heart of potential device technologies that may be realized from the functional organization of layered two-dimensional (2D) nanomaterials. For intermediate to large-scale applications modeling, van der Waals density functionals have become the de facto choice for first-principles calculations. In particular, the vdW-DF family of functionals have provided a systematic approach to this theoretically challenging problem. While much progress has been made, there remains room for improvement in the microscopic description of vdW forces from these density functionals. In this work, we compute benchmark results for the binding energy and the electronic density response to binding in TiS2 via accurate diffusion quantum Monte Carlo calculations. We compare these benchmark data to results obtained from local, semilocal, and van der Waals functionals. In particular, we gauge the quality of the original vdW-DF/vdW-DF2 functionals, as well as updated variants such as vdW-DF-C09, vdW-DF-optB88, vdW-DF-optB86b, and vdW-DF2-B86R. We find a close relationship between the accuracy of predicted interlayer separation distances and binding energies for TiS2, with the vdW-DF-optB88 functional performing very well in terms of both quantities. In general, the more recently developed functionals are systematic improvements over older ones. However, when considering the response of the electron density to binding, we find that local-density approximation (LDA) and PBEsol generally outperform the vdW-DF functionals in describing the interlayer charge accumulation with vdW-DF-C09 variants performing the best overall.

9.
Nat Commun ; 10(1): 3064, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31296880

ABSTRACT

The unique properties of ferroelectric materials enable a plethora of applications, which are hindered by the phenomenon known as ferroelectric fatigue that leads to the degradation of ferroelectric properties with polarization cycling. Multiple microscopic models explaining fatigue have been suggested; however, the chemical origins remain poorly understood. Here, we utilize multimodal chemical imaging that combines atomic force microscopy with time-of-flight secondary mass spectrometry to explore the chemical phenomena associated with fatigue in PbZr0.2Ti0.8O3 (PZT) thin films. Investigations reveal that the degradation of ferroelectric properties is correlated with a local chemical change and migration of electrode ions into the PZT structure. Density functional theory simulations support the experimental results and demonstrate stable doping of the thin surface PZT layer with copper ions, leading to a decrease in the spontaneous polarization. Overall, the performed research allows for the observation and understanding of the chemical phenomena associated with polarization cycling and their effects on ferroelectric functionality.

10.
Sci Rep ; 9(1): 3009, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30816206

ABSTRACT

Control over the concurrent occurrence of structural (monoclinic to tetragonal) and electrical (insulator to the conductor) transitions presents a formidable challenge for VO2-based thin film devices. Speed, lifetime, and reliability of these devices can be significantly improved by utilizing solely electrical transition while eliminating structural transition. We design a novel strain-stabilized isostructural VO2 epitaxial thin-film system where the electrical transition occurs without any observable structural transition. The thin-film heterostructures with a completely relaxed NiO buffer layer have been synthesized allowing complete control over strains in VO2 films. The strain trapping in VO2 thin films occurs below a critical thickness by arresting the formation of misfit dislocations. We discover the structural pinning of the monoclinic phase in (10 ± 1 nm) epitaxial VO2 films due to bandgap changes throughout the whole temperature regime as the insulator-to-metal transition occurs. Using density functional theory, we calculate that the strain in monoclinic structure reduces the difference between long and short V-V bond-lengths (ΔV-V) in monoclinic structures which leads to a systematic decrease in the electronic bandgap of VO2. This decrease in bandgap is additionally attributed to ferromagnetic ordering in the monoclinic phase to facilitate a Mott insulator without going through the structural transition.

11.
Phys Chem Chem Phys ; 21(9): 4738-4745, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30335103

ABSTRACT

The slow kinetics of the oxygen evolution (OER) and oxygen reduction (ORR) reactions hamper the development of renewable energy storage and conversion technologies. Transition-metal oxides (TMOs) are cost-effective replacements to conventional noble metal catalysts for driving these electrochemical systems. Strain is known to greatly affect the electronic structure of TMO surfaces, leading to significant changes in their electrocatalytic activities. In this study, we explore the influence of strain on the OER and ORR mechanisms on the LaNiO3(001) surface using density functional theory (DFT). Through a comparison of the overpotential and the largest change in Gibbs free energy (ΔG) in the reaction pathway, we determined that the OER activity on the LaNiO3 surface is directly related to the desorption of -H from the surface, which can be tuned as a function of strain. Moreover, tensile strain shuts off the reaction pathway to forming the -O2H intermediate state, due to the dissociation of -O2H into -O2 and -H. This is largely a consequence of the strong binding of H to the surface O, leading to a significant increase in the largest ΔG for the ORR on the tensile-strained surfaces by promoting an alternative reaction pathway. Overall, our results show that tensile strain on LaNiO3(001) leads to a decrease in both OER and ORR activities. Interestingly, in both cases, we find that the reaction is driven by the interactions with surface O ions, thus calling for a reinterpretation of the role that Ni eg orbital polarization plays in defining the OER and ORR catalytic activity on the TMO surfaces. Here, it is an indirect measure of changes in Ni-O hybridization, which controls the binding of -H species to the surface. As such, these results highlight the importance of surface O ions; particularly as it relates to defining molecule-surface interactions that ultimately tune and enhance the electrocatalytic efficiency of perovskite materials through the modulation of strains.

13.
Sci Rep ; 7: 43482, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256544

ABSTRACT

Using the van der Waals density functional with C09 exchange (vdW-DF-C09), which has been applied to describing a wide range of dispersion-bound systems, we explore the physical properties of prototypical ABO3 bulk ferroelectric oxides. Surprisingly, vdW-DF-C09 provides a superior description of experimental values for lattice constants, polarization and bulk moduli, exhibiting similar accuracy to the modified Perdew-Burke-Erzenhoff functional which was designed specifically for bulk solids (PBEsol). The relative performance of vdW-DF-C09 is strongly linked to the form of the exchange enhancement factor which, like PBEsol, tends to behave like the gradient expansion approximation for small reduced gradients. These results suggest the general-purpose nature of the class of vdW-DF functionals, with particular consequences for predicting material functionality across dense and sparse matter regimes.

14.
Adv Sci (Weinh) ; 3(12): 1600175, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27981007

ABSTRACT

Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified cathode through both chemical and physical confinements, these chloride-coated cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. From adsorption experiments and theoretical calculations, it is shown that not only the sulfide-adsorption effect but also the diffusivity in the vicinity of these chlorides materials plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Balancing the adsorption and diffusion effects of these nonconductive materials could lead to the enhanced cycling performance of an Li-S cell. Electrochemical analyses over hundreds of cycles indicate that cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salts, delivering an average specific capacity of above 1200 mAh g-1 at 0.2 C.

15.
Sci Rep ; 6: 25452, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27151049

ABSTRACT

The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the "polar catastrophe" mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified "polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.

16.
J Am Chem Soc ; 138(8): 2488-91, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26866808

ABSTRACT

Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of the eg orbitals, which can customize orbital asymmetry at the surface. Analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.

17.
ACS Nano ; 9(12): 11509-39, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26544756

ABSTRACT

The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.

18.
Sci Rep ; 5: 12969, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26246030

ABSTRACT

Multiferroic BiFeO3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. However, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combination of first-principles calculations and group-theoretic analyses. We demonstrate that the antiferromagnetic moment vector can be stabilized along unique crystallographic directions ([110] and [-110]) under compressive and tensile strains. A direct coupling between the anisotropic antiferrodistortive rotations and the Dzyaloshinskii-Moria interactions drives the stabilization of the weak ferromagnetism. Furthermore, energetically competing C- and G-type magnetic orderings are observed at high compressive strains, suggesting that it may be possible to switch the weak ferromagnetism "on" and "off" under the application of strain. These findings emphasize the importance of strain and antiferrodistortive rotations as routes to enhancing induced weak ferromagnetism in multiferroic oxides.

19.
Rep Prog Phys ; 78(6): 066501, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25978530

ABSTRACT

A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

20.
Adv Sci (Weinh) ; 2(8): 1500041, 2015 Aug.
Article in English | MEDLINE | ID: mdl-27980962

ABSTRACT

Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO3 thin films, which comprises a tetragonal-like (T') and an intermediate S' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S' phase is energetically very close to the T' phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T' and S' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S' and T' polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S' to T' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

SELECTION OF CITATIONS
SEARCH DETAIL
...