Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 21: 1122-1139, 2023.
Article in English | MEDLINE | ID: mdl-36789259

ABSTRACT

For plants, distinguishing between mutualistic and pathogenic microbes is a matter of survival. All microbes contain microbe-associated molecular patterns (MAMPs) that are perceived by plant pattern recognition receptors (PRRs). Lysin motif receptor-like kinases (LysM-RLKs) are PRRs attuned for binding and triggering a response to specific MAMPs, including chitin oligomers (COs) in fungi, lipo-chitooligosaccharides (LCOs), which are produced by mycorrhizal fungi and nitrogen-fixing rhizobial bacteria, and peptidoglycan in bacteria. The identification and characterization of LysM-RLKs in candidate bioenergy crops including Populus are limited compared to other model plant species, thus inhibiting our ability to both understand and engineer microbe-mediated gains in plant productivity. As such, we performed a sequence analysis of LysM-RLKs in the Populus genome and predicted their function based on phylogenetic analysis with known LysM-RLKs. Then, using predictive models, molecular dynamics simulations, and comparative structural analysis with previously characterized CO and LCO plant receptors, we identified probable ligand-binding sites in Populus LysM-RLKs. Using several machine learning models, we predicted remarkably consistent binding affinity rankings of Populus proteins to CO. In addition, we used a modified Random Walk with Restart network-topology based approach to identify a subset of Populus LysM-RLKs that are functionally related and propose a corresponding signal transduction cascade. Our findings provide the first look into the role of LysM-RLKs in Populus-microbe interactions and establish a crucial jumping-off point for future research efforts to understand specificity and redundancy in microbial perception mechanisms.

2.
Mycorrhiza ; 32(3-4): 281-303, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35511363

ABSTRACT

Arbuscular mycorrhizal (AM) fungi form a root endosymbiosis with many agronomically important crop species. They enhance the ability of their host to obtain nutrients from the soil and increase the tolerance to biotic and abiotic stressors. However, AM fungal species can differ in the benefits they provide to their host plants. Here, we examined the putative molecular mechanisms involved in the regulation of the physiological response of Medicago truncatula to colonization by Rhizophagus irregularis or Glomus aggregatum, which have previously been characterized as high- and low-benefit AM fungal species, respectively. Colonization with R. irregularis led to greater growth and nutrient uptake than colonization with G. aggregatum. These benefits were linked to an elevated expression in the roots of strigolactone biosynthesis genes (NSP1, NSP2, CCD7, and MAX1a), mycorrhiza-induced phosphate (PT8), ammonium (AMT2;3), and nitrate (NPF4.12) transporters and the putative ammonium transporter NIP1;5. R. irregularis also stimulated the expression of photosynthesis-related genes in the shoot and the upregulation of the sugar transporters SWEET1.2, SWEET3.3, and SWEET 12 and the lipid biosynthesis gene RAM2 in the roots. In contrast, G. aggregatum induced the expression of biotic stress defense response genes in the shoots, and several genes associated with abiotic stress in the roots. This suggests that either the host perceives colonization by G. aggregatum as pathogen attack or that G. aggregatum can prime host defense responses. Our findings highlight molecular mechanisms that host plants may use to regulate their association with high- and low-benefit arbuscular mycorrhizal symbionts.


Subject(s)
Ammonium Compounds , Medicago truncatula , Mycorrhizae , Ammonium Compounds/metabolism , Medicago truncatula/microbiology , Mycorrhizae/physiology , Plant Roots/microbiology , Symbiosis/physiology , Transcriptome
3.
J Exp Bot ; 72(15): 5285-5299, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33954584

ABSTRACT

Split-root assays have been used widely in studies focused on understanding the complex regulatory mechanisms in legume-rhizobia symbioses, root nitrogen rhizodeposition, and belowground nitrogen transfer, and the effects of different biotic/abiotic factors on this symbiotic interaction. This assay allows a plant to have a root system that is physically divided into two distinct sections that are both still attached to a common shoot. Thus, each root section can be treated separately to monitor local and systemic plant responses. Different techniques are used to establish split-root assemblies, including double-pot systems, divided growth pouches, elbow root assembly, twin-tube systems, a single pot or chamber with a partition in the center, and divided agar plates. This review is focused on discussing the various types of split-root assays currently used in legume-based studies, and their associated advantages and limitations. Furthermore, this review also focuses on how split-root assays have been used for studies on nitrogen rhizodeposition, belowground nitrogen transfer, systemic regulation of nodulation, and biotic and abiotic factors affecting legume-rhizobia symbioses.


Subject(s)
Fabaceae , Rhizobium , Nitrogen , Nitrogen Fixation , Plant Root Nodulation , Plant Roots , Root Nodules, Plant , Symbiosis
4.
Nat Commun ; 11(1): 3897, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753587

ABSTRACT

Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development.


Subject(s)
Chitin/analogs & derivatives , Chitin/metabolism , Fungi/growth & development , Fungi/metabolism , Signal Transduction/physiology , Ascomycota/growth & development , Basidiomycota/growth & development , Chitosan , Ecology , Fatty Acids/metabolism , Mycorrhizae/physiology , Oligosaccharides , Rhizobium/metabolism , Spores, Fungal/growth & development , Symbiosis/physiology
5.
Plant Cell ; 31(10): 2386-2410, 2019 10.
Article in English | MEDLINE | ID: mdl-31416823

ABSTRACT

Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.


Subject(s)
Calcium Channels/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calcium/metabolism , Laccaria/metabolism , Lipopolysaccharides/metabolism , Plant Roots/microbiology , Symbiosis/physiology , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Gene Expression Regulation, Plant , Lipopolysaccharides/chemistry , Mycorrhizae/growth & development , Mycorrhizae/metabolism , Mycorrhizae/physiology , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Populus/genetics , Populus/metabolism , Signal Transduction
6.
Nat Plants ; 5(7): 676-680, 2019 07.
Article in English | MEDLINE | ID: mdl-31285560

ABSTRACT

The molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.


Subject(s)
Laccaria/physiology , Mycorrhizae/physiology , Plant Proteins/metabolism , Populus/enzymology , Populus/microbiology , Protein Kinases/metabolism , Symbiosis , Laccaria/genetics , Mycorrhizae/genetics , Plant Proteins/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/physiology , Populus/genetics , Populus/physiology , Protein Kinases/genetics
7.
PLoS One ; 11(10): e0163121, 2016.
Article in English | MEDLINE | ID: mdl-27706176

ABSTRACT

Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 µmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.


Subject(s)
Capsicum/growth & development , Cucumis sativus/growth & development , Light , Solanum lycopersicum/growth & development , Capsicum/metabolism , Capsicum/radiation effects , Chlorophyll/metabolism , Cucumis sativus/metabolism , Cucumis sativus/radiation effects , Solanum lycopersicum/metabolism , Solanum lycopersicum/radiation effects , Photons , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Stems/physiology
8.
New Phytol ; 208(1): 79-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25982949

ABSTRACT

Ectomycorrhizal (ECM) symbioses are among the most widespread associations between roots of woody plants and soil fungi in forest ecosystems. These associations contribute significantly to the sustainability and sustainagility of these ecosystems through nutrient cycling and carbon sequestration. Unfortunately, the molecular mechanisms controlling the mutual recognition between both partners are still poorly understood. Elegant work has demonstrated that effector proteins from ECM and arbuscular mycorrhizal (AM) fungi regulate host defenses by manipulating plant hormonal pathways. In parallel, genetic and evolutionary studies in legumes showed that a 'common symbiosis pathway' is required for the establishment of the ancient AM symbiosis and has been recruited for the rhizobia-legume association. Given that genes of this pathway are present in many angiosperm trees that develop ectomycorrhizas, we propose their potential involvement in some but not all ECM associations. The maintenance of a successful long-term relationship seems strongly regulated by resource allocation between symbiotic partners, suggesting that nutrients themselves may serve as signals. This review summarizes our current knowledge on the early and late signal exchanges between woody plants and ECM fungi, and we suggest future directions for decoding the molecular basis of the underground dance between trees and their favorite fungal partners.


Subject(s)
Forests , Fungi , Genes, Plant , Mycorrhizae/genetics , Soil/chemistry , Symbiosis , Trees/genetics , Carbon/metabolism , Fabaceae/genetics , Fabaceae/metabolism , Fabaceae/microbiology , Fungi/genetics , Fungi/metabolism , Mycorrhizae/metabolism , Nitrogen/metabolism , Signal Transduction , Soil Microbiology , Trees/metabolism , Trees/microbiology
9.
Photochem Photobiol ; 90(3): 574-84, 2014.
Article in English | MEDLINE | ID: mdl-24372324

ABSTRACT

Photosynthesis (Pn) and photomorphogenesis (Pm) are affected by light quality, light intensity and photoperiod. Although blue light (BL) is necessary for normal development, it is less efficient in driving Pn than other wavelengths of photosynthetically active radiation. The effects of BL on Pm are highly species dependent. Here we report the interacting effects of BL and photosynthetic photon flux (PPF) on growth and development of lettuce, radish and pepper. We used light-emitting diode (LED) arrays to provide BL fractions from 11% to 28% under broad-spectrum white LEDs, and from 0.3% to 92% under monochromatic LEDs. All treatments were replicated three times at each of two PPFs (200 and 500 µmol m(-2) s(-1)). Other than light quality, environmental conditions were uniformly maintained across chambers. Regardless of PPF, BL was necessary to prevent shade-avoidance responses in radish and lettuce. For lettuce and radish, increasing BL reduced stem length, and for both species, there were significant interactions of BL with PPF for leaf expansion. Increasing BL reduced petiole length in radish and flower number in pepper. BL minimally affected pepper growth and other developmental parameters. Pepper seedlings were more photobiologically sensitive than older plants. Surprisingly, there were few interactions between monochromatic and broad-spectrum light sources.


Subject(s)
Light , Photosynthesis , Vegetables/growth & development , Morphogenesis , Photoperiod , Plant Leaves/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...