Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Methods Mol Biol ; 1803: 371-381, 2018.
Article in English | MEDLINE | ID: mdl-29882150

ABSTRACT

Allergic diseases (atopy) include asthma, allergic rhinitis, conjunctivitis, and allergic sinusitis. It is estimated that up to 90% of asthmatics are atopic and have an allergy trigger for asthmatic episodes. In order to assess the risk of allergy induction associated with inhalation exposure, animal models of protein allergy have been developed. These models have been used both to identify proteins as allergens and to assess their relative potency. Often these research situations include allergens that are not well characterized or are unknown. In these situations, specific allergens are not available to be evaluated by more well-known assays (such as ELISAs), and developing a specific assay to evaluate an extract or mixture for an unknown or potential allergen is very time consuming and generally requires purified antigen/allergen. Additionally, when the comparison of the relative potency of multiple extracts is of interest, a common/generic platform is necessary. A more generic method, the rat basophil leukemia cell assay (RBL assay), has been developed which provides insight into the allergenicity of extracts and mixtures as well as providing a common platform for relative potency comparison between/among these complex allergen sources.


Subject(s)
Antigens/metabolism , Basophils/pathology , Immunoassay/methods , Immunoglobulin E/metabolism , Leukemia/immunology , Animals , Cell Adhesion , Mice , Pollen/immunology , Rats , beta-N-Acetylhexosaminidases/metabolism
2.
Inhal Toxicol ; 27(11): 533-44, 2015.
Article in English | MEDLINE | ID: mdl-26514781

ABSTRACT

Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 µg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2 h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of T(H)2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 µg/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone.


Subject(s)
Biofuels/toxicity , Glycine max/toxicity , Hypersensitivity/metabolism , Inflammation Mediators/metabolism , Inhalation Exposure/adverse effects , Vehicle Emissions/toxicity , Air Pollutants/toxicity , Animals , Female , Hypersensitivity/etiology , Hypersensitivity/pathology , Mice , Mice, Inbred BALB C , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/pathology , Particulate Matter/toxicity
3.
Inhal Toxicol ; 26(8): 474-84, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24987979

ABSTRACT

Damp/moldy indoor environments, which have resulted from flooding events and may increase as a result of climate change, have been associated with asthma exacerbation. Certain molds found in significantly higher or lower concentrations in asthmatics' homes compared to control homes have been categorized as Group 1 (G1) and Group 2 (G2) molds, respectively. We have compared the allergic potential of selected G1/G2 molds to house dust mite (HDM) in a mouse model. BALB/c mice were exposed to mold (0-80 µg) or HDM (20 µg) extract by intratracheal aspiration either 4X over 4 weeks (allergenicity) or 1X (non-specific responses). Airflow limitation (methacholine challenge) was measured (Day 1) and serum and bronchoalveolar lavage fluid were collected (Day 2) after the final exposure. The G1 molds induced low-to-moderate responses and required higher doses to achieve antigen-specific IgE results similar to those induced by HDM. Compared to HDM responses, the G2 mold in this study required lower doses to induce a similar response. Acute exposure responses suggest some molds may exacerbate asthmatic responses. These studies demonstrate the differing capacities of molds to induce responses associated with allergic asthma, including differences in the threshold dose for allergy induction. Therefore, molds must be evaluated individually for allergic/asthmatic potential. These studies along with our previous studies with G1 (Stachybotrys chartarum)/G2 (Penicillium chrysogenum) molds suggest that the G1/G2 categorization is not indicative of allergic potential but they do not preclude this categorization's utility in determining unhealthy building dampness.


Subject(s)
Allergens/toxicity , Antigens, Fungal/toxicity , Air Pollution, Indoor , Animals , Antigens, Dermatophagoides/toxicity , Bronchoalveolar Lavage Fluid/cytology , Cell Count , Cell Line, Tumor , Cladosporium/immunology , Female , Housing , Immunoglobulin E/blood , Immunoglobulin E/immunology , Mice, Inbred BALB C , Rats , Scopulariopsis/immunology , Trichoderma/immunology , Water
4.
J Toxicol ; 2011: 360805, 2011.
Article in English | MEDLINE | ID: mdl-21785589

ABSTRACT

Biopesticides can be effective in controlling their target pest. However, research regarding allergenicity and asthma development is limited. We compared the ability of fungal biopesticide Metarhizium anisopliae (MACA) and house dust mite (HDM) extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration at doubling doses (2.5-80 µg protein) 4X over a four-week period. Three days after the last exposure, serum and bronchoalveolar lavage fluid (BALF) were collected. The extracts' relative allergenicity was evaluated based on response robustness (lowest significant dose response compared to control (0 µg)). MACA induced a more robust serum total IgE response than HDM. However, in the antigen-specific IgE assay, a similar dose of both MACA and HDM was required to achieve the same response level. Our data suggest a threshold dose of MACA for allergy induction and that M. anisopliae may be similar to HDM in allergy induction potential.

5.
Inhal Toxicol ; 22(6): 460-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20235799

ABSTRACT

A report by the Institute of Medicine suggested that more research is needed to better understand mold effects on allergic disease, particularly asthma development. The authors compared the ability of the fungus Stachybotrys chartarum (SCE) and house dust mite (HDM) extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration (IA) at several doses (0, 2.5, 5, 10, 20, 40, and 80 microg) 4 times over a 4-week period. Three days after the last IA exposure, serum and bronchoalveolar lavage fluid (BALF) were collected. The relative allergenicity of the extracts was evaluated based on the lowest dose that induced a significant response compared to control (0 microg) and the linear regression slope analysis across the dose range. SCE induced a more robust response than HDM for BALF some inflammatory cells (macrophage and neutrophils), whereas HDM induced more robust BALF lymphocyte and eosinophil responses. Although SCE induced a more robust serum total immunoglobulin E (IgE) response than did HDM, the induction of a similar response in a functional, antigen-specific IgE assay required approximately twice as much SCE as HDM. Even though SCE demonstrates the ability to induce allergic responses in the mouse model, considering the importance and relevance of eosinophil, lymphocyte, and antigen-specific IgE in allergic airway disease, it is concluded that HDM is more potent than SCE in the induction of allergic responses. These data suggest a threshold dose for SCE allergy induction. Furthermore, in damp water-damaged environments, exposure to S. chartarum might easily exceed the sensitization threshold for a susceptible population.


Subject(s)
Antigens, Dermatophagoides/immunology , Antigens, Fungal/immunology , Hypersensitivity/etiology , Pyroglyphidae/immunology , Stachybotrys/immunology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cell Line, Tumor , Disease Models, Animal , Female , Hypersensitivity/blood , Hypersensitivity/immunology , Immunoglobulin E/blood , L-Lactate Dehydrogenase/analysis , Leukocyte Count , Linear Models , Mice , Mice, Inbred BALB C , Peptide Hydrolases/metabolism , Rats , beta-N-Acetylhexosaminidases/analysis
6.
Toxicol Appl Pharmacol ; 244(2): 144-55, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20045013

ABSTRACT

Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naïve individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of approximately 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.


Subject(s)
Allergens , Bronchial Hyperreactivity/immunology , Respiratory Hypersensitivity/diagnosis , Respiratory Hypersensitivity/immunology , Acute Disease , Allergens/toxicity , Animals , Biomarkers/analysis , Bronchial Hyperreactivity/diagnosis , Bronchial Hyperreactivity/pathology , Cattle , Female , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Respiratory Hypersensitivity/pathology , Serum Albumin, Bovine/toxicity
7.
J Immunotoxicol ; 7(1): 57-67, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19916739

ABSTRACT

Evidence suggests that the predisposition towards atopy begins early in life. Maternal allergy has been associated with an increased risk of the development of allergic disease in offspring. Some studies suggest that the development of childhood atopy may also be influenced by prenatal allergen exposure. In this study, a respiratory allergen exposure model was used to determine the impact of maternal sensitization (with or without additional exposures during pregnancy) on subsequent pup responses to homologous or heterologous allergen. Female BALB/c mice received two intratracheal aspiration (IA) exposures to Metarhizium anisopliae crude antigen (MACA) or Hank's buffered salt solution (HBSS) prior to breeding. Some mice also received three additional exposures during pregnancy. Control mothers did not receive treatment. Young adult offspring received three IA exposures to MACA, house dust mite extract (HDM) or HBSS. Offspring sensitized as young adults to either HDM or MACA developed an airway inflammatory response, including increased bronchoalveolar lavage fluid lactate dehydrogenase activity, total protein and total and differential cell counts compared to offspring exposed to HBSS. Increased airway responsiveness to methacholine was observed in pups treated with HDM but not with MACA. Maternal sensitization status (with or without gestational allergen exposure) had no effect on offspring response to either MACA or HDM. In conclusion, this study demonstrates that IA administration of MACA or HDM extract to young adult BALB/c mice induces the development of an inflammatory airway response. In contrast to previous reports, neither maternal sensitization nor gestational allergen exposure could be demonstrated to have a clear effect on offspring sensitization. This discrepancy may be a function of the respiratory sensitization and exposure protocol used in this study, which mimics natural sensitization more closely than do parenteral routes of exposure.


Subject(s)
Allergens/immunology , Bronchial Hyperreactivity/immunology , Maternal Exposure/adverse effects , Pregnancy Complications/immunology , Prenatal Exposure Delayed Effects , Allergens/administration & dosage , Animals , Antigens, Fungal/administration & dosage , Antigens, Fungal/immunology , Bronchial Hyperreactivity/pathology , Bronchial Hyperreactivity/physiopathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Female , Intubation, Intratracheal , Male , Maternal-Fetal Exchange , Methacholine Chloride , Mice , Mice, Inbred BALB C , Mitosporic Fungi/immunology , Pregnancy , Pregnancy Outcome
8.
J Immunotoxicol ; 6(4): 276-84, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19845451

ABSTRACT

The T-helper 2 (T(H)2) bias associated with pregnancy may predispose the pregnant mother to the development or exacerbation of allergic disease. To determine the effects of pregnancy on pre-existing maternal sensitization, we sensitized BALB/c mice before breeding by two intratracheal aspiration (IA) exposures to the fungal allergen, Metarhizium anisopliae crude antigen (MACA). Some mice also received three IA exposures to MACA on gestational days 11, 15, and 19. After weaning, all mice were challenged IA with MACA before killing. To determine the effects of pregnancy on susceptibility to future sensitization, naïve parous and nulliparous BALB/c mice were sensitized by three IA exposures to MACA or to Hank's buffered salt solution vehicle control. Pregnancy did not have a significant effect on individual inflammatory parameters (airway responsiveness to methacholine, total serum and bronchoalveolar lavage fluid (BALF) IgE, BALF total protein, lactate dehydrogenase activity, and total and differential cell counts) following allergen challenge in sensitized mice, regardless of post-breeding allergen exposure. In conclusion there was a weak inhibition of the overall response in mice exposed to allergen during pregnancy compared to identically treated nulliparous mice. In contrast, parous mice that did not encounter allergen post-breeding tended to have exacerbated responses. Parity had no significant impact on future susceptibility to sensitization.


Subject(s)
Allergens/immunology , Antigens, Fungal/immunology , Bronchial Hyperreactivity/immunology , Mitosporic Fungi/immunology , Pregnancy Complications/immunology , Administration, Inhalation , Airway Resistance/drug effects , Airway Resistance/physiology , Allergens/administration & dosage , Animals , Antigens, Fungal/administration & dosage , Bronchial Hyperreactivity/pathology , Bronchial Hyperreactivity/physiopathology , Female , Male , Maternal Exposure , Mice , Mice, Inbred BALB C , Pregnancy , Spores, Fungal/immunology
9.
Int Arch Allergy Immunol ; 150(4): 343-51, 2009.
Article in English | MEDLINE | ID: mdl-19571566

ABSTRACT

BACKGROUND: Previous studies have demonstrated that Metarhizium anisopliae extract can induce responses characteristic of human allergic asthma in a mouse model. The study objectives were (1) to identify and characterize the M. anisopliae mycelia extract (MYC) proteins that are recognized by mouse serum IgE, (2) to determine if human serum IgE reacts with these proteins, and (3) to determine if these IgE-reactive proteins are found in other fungi. METHODS: Asthmatic human serum IgE, M. anisopliae crude antigen (MACA) immunized mouse serum IgE, and anti-catalase antibodies were used to probe one- and two-dimensional gel electrophoresis blots of MYC. RESULTS: Mass spectrometry analysis identified catalase as a mouse IgE-reactive protein. This identification was confirmed by assaying catalase activity in the extract and extract immunoblots probed with anti-catalase antibody. Six adult asthmatic sera contained IgE, but not IgG, that was reactive with mycelia extract proteins. A similar protein profile was seen when blots were probed with either mouse anti-MACA IgE or anti-bovine liver catalase antibodies. Furthermore, these mouse anti-MACA and anti-catalase antibodies were cross-reactive with other mold extracts (skin prick testing mix) and Aspergillus niger catalase. CONCLUSIONS: Some human asthmatics have developed IgE that reacts with an M. anisopliae catalase, most likely due to cross-reactivity (minimal IgG development). The cross-reactivity among fungal catalases suggests that IgE-reactive catalase might be useful for exposure assessment. Additionally, the similarity of protein profiles visualized with both human and mouse serum IgE suggests that allergy hazard identification can be facilitated using a mouse model.


Subject(s)
Antigens, Fungal/metabolism , Asthma/immunology , Catalase/metabolism , Immunoglobulin E/metabolism , Metarhizium/immunology , Adult , Animals , Antigens, Fungal/immunology , Asthma/blood , Asthma/microbiology , Catalase/immunology , Cattle , Female , Humans , Immunization, Secondary , Immunoglobulin E/immunology , Metarhizium/enzymology , Mice , Mice, Inbred BALB C , Mycelium/metabolism , Protein Binding
10.
J Immunotoxicol ; 6(1): 62-73, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19519164

ABSTRACT

Intratracheal aspiration (IA) exposure to Metarhizium anisopliae crude antigen (MACA), which is composed of equal protein amounts of mycelium (MYC), conidia (CON) and inducible proteases/chitinases (IND) extracts/filtrates, has resulted in responses characteristic of human allergic asthma in mice. The study objective was to evaluate the potential of each component extract to induce allergic/asthma-like responses observed in this mouse model. BALB/c mice received 4 IA exposures to MACA, CON, MYC, IND, or bovine serum albumin (BSA; negative control) or appropriate vehicle control or inflammatory control over a 4-wk period. Mice were assessed by whole-body plethysmography for immediate airway responses and airway hyperresponsiveness to methacholine (Mch) challenge (PenH). Serum and bronchoalveolar lavage fluid (BALF) were collected 3 d after the final exposure. Additionally, BALF neurotrophin levels and extract protease and chitinase activity levels were evaluated. Western blot analysis showed that each component contained different IgE-reactive proteins. All fungal extract exposures resulted in elevated BALF total and differential cell counts, IgE and IgA and total serum IgE compared to HBSS and BSA controls. MYC-exposed mice had the highest responses except for neutrophil influx, which was highest in MACA and IND exposures. However, the MYC-exposed mice had significantly lower PenH values compared to other treatments. By comparison IND and MACA induced significantly higher PenH values. Additionally, IND had substantially higher protease activity levels but induced the lowest neurotrophin levels compared to the other fungal exposures. In this allergic asthma model extract chitinase activity was not associated with allergic responses. In summary, multiple exposures to any of the M. anisopliae component extracts induced allergic/asthma-like responses in BALB/c mice but the response magnitude was different for each component and each appears to contain unique IgE-reactive proteins. Therefore, hazard identification and/or risk assessment for molds must test both mycelia and conidia.


Subject(s)
Antigens/immunology , Asthma/immunology , Metarhizium/immunology , Animals , Antigens/administration & dosage , Antigens/chemistry , Asthma/chemically induced , Asthma/pathology , Asthma/physiopathology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Bronchial Provocation Tests , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cell Count , Enzymes/administration & dosage , Enzymes/chemistry , Enzymes/immunology , Female , Granulocytes/cytology , Granulocytes/immunology , Immunoglobulin A/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/physiopathology , Lymphocytes/cytology , Lymphocytes/immunology , Metarhizium/chemistry , Metarhizium/enzymology , Mice , Mice, Inbred BALB C , Mycelium/chemistry , Mycelium/immunology , Nerve Growth Factors/analysis , Nerve Growth Factors/metabolism , Pesticides/chemistry , Pesticides/immunology , Spores, Fungal/chemistry , Spores, Fungal/immunology , Vaccination
11.
Environ Health Perspect ; 111(12): 1471-7, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12948886

ABSTRACT

Children living in Hettstedt in eastern Germany have been reported to have a higher prevalence of sensitization to common aeroallergens than another cohort living in the neighboring city of Zerbst; these differences correlated with the presence of industrial air pollution. Samples of fine particulate matter (< 2.5 micro m aerodynamic diameter; PM(2.5)) collected in Hettstedt in 1999 had several-fold higher levels of zinc, magnesium, lead, copper, and cadmium than samples from Zerbst. To determine if the results from epidemiologic studies could be repeated in an animal model, we administered PM(2.5) from Hettstedt and Zerbst to ovalbumin-allergic mice. In Balb/c mice, PM(2.5) from Hettstedt, but not PM(2.5) from Zerbst or control filter extract, caused a significant increase in immediate responses to ovalbumin challenge when aspirated 2 hr before challenge, but not when aspirated immediately before sensitization 2 weeks earlier. Antigen-specific IgE was increased by Hettstedt PM(2.5) whether administered before sensitization or challenge. Airway responsiveness to methacholine aerosol and lung inflammatory cell numbers were significantly increased only in allergic mice exposed to Hettstedt PM(2.5) before challenge. Both Hettstedt and Zerbst PM(2.5) significantly increased lung injury parameters and proinflammatory cytokines. These results are consistent with epidemiologic findings and show that metal composition of ambient PM(2.5) influences the severity of allergic respiratory disease.


Subject(s)
Air Pollutants/adverse effects , Air Pollutants/immunology , Hypersensitivity/etiology , Lung/immunology , Aerosols , Animals , Antigens/analysis , Child , Disease Models, Animal , Epidemiologic Studies , Female , Germany , Humans , Hypersensitivity/immunology , Hypersensitivity/veterinary , Immunoglobulin E/analysis , Lung/pathology , Mice , Mice, Inbred BALB C , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...