Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Genet Med ; 22(4): 736-744, 2020 04.
Article in English | MEDLINE | ID: mdl-31780822

ABSTRACT

PURPOSE: To investigate the impact of rapid-turnaround exome sequencing in critically ill neonates using phenotype-based subject selection criteria. METHODS: Intensive care unit babies aged <6 months with hypotonia, seizures, a complex metabolic phenotype, and/or multiple congenital malformations were prospectively enrolled for rapid (<7 day) trio-based exome sequencing. Genomic variants relevant to the presenting phenotype were returned to the medical team. RESULTS: A genetic diagnosis was attained in 29 of 50 (58%) sequenced cases. Twenty-seven (54%) patients received a molecular diagnosis involving known disease genes; two additional cases (4%) were solved with pathogenic variants found in novel disease genes. In 24 of the solved cases, diagnosis had impact on patient management and/or family members. Management changes included shift to palliative care, medication changes, involvement of additional specialties, and the consideration of new experimental therapies. CONCLUSION: Phenotype-based patient selection is effective at identifying critically ill neonates with a high likelihood of receiving a molecular diagnosis via rapid-turnaround exome sequencing, leading to faster and more accurate diagnoses, reducing unnecessary testing and procedures, and informing medical care.


Subject(s)
Critical Illness , Exome , Aged , Exome/genetics , Genetic Testing , Humans , Infant , Infant, Newborn , Phenotype , Prospective Studies , Exome Sequencing
2.
Genet Med ; 22(2): 423-426, 2020 02.
Article in English | MEDLINE | ID: mdl-31527676

ABSTRACT

PURPOSE: Pediatric cardiomyopathy is rare, has a broad differential diagnosis, results in high morbidity and mortality, and has suboptimal diagnostic yield using next-generation sequencing panels. Exome sequencing has reported diagnostic yields ranging from 30% to 57% for neonates in intensive care units. We aimed to characterize the clinical utility of exome sequencing in infantile heart failure. METHODS: Infants diagnosed with acute heart failure prior to 1 year old over a period of 34 months at a large tertiary children's hospital were recruited. Demographic and diagnostic information was obtained from medical records. Fifteen eligible patients were enrolled. RESULTS: Dilated cardiomyopathy was the predominant cardiac diagnosis, seen in 60% of patients. A molecular diagnosis was identified in 66.7% of patients (10/15). Of those diagnoses, 70% would not have been detected using multigene next-generation sequencing panels focused on cardiomyopathy or arrhythmia disease genes. Genetic testing changed medical decision-making in 53% of all cases and 80% of positive cases, and was especially beneficial when testing was expedited. CONCLUSION: Given the broad differential diagnosis and critical status of infants with heart failure, rapid exome sequencing provides timely diagnoses, changes medical management, and should be the first-tier molecular test.


Subject(s)
Exome Sequencing/trends , Genetic Testing/ethics , Heart Failure/diagnosis , Cardiomyopathies/genetics , Cardiomyopathy, Dilated/genetics , Exome/genetics , Female , Genetic Testing/trends , Heart Failure/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Infant, Newborn , Male , Treatment Outcome , Exome Sequencing/methods
3.
Am J Med Genet A ; 176(5): 1249-1252, 2018 05.
Article in English | MEDLINE | ID: mdl-29681100

ABSTRACT

Bohring-Opitz syndrome (BOS) is characterized clinically by severe developmental delays, microcephaly, failure to thrive, and characteristic facial features (prominent eyes, facial nevus simplex [flammeus], and others). Most patients meeting the clinical criteria for BOS (MIM: 605039) have a de novo nonsense or frameshift variant in ASXL1. We report a case of BOS caused by a pathogenic ASXL1 variant inherited from a germline mosaic mother. The ASXL1 mutation was detected via trio exome sequencing. The sequencing data demonstrated that the variant was inherited maternally but that the maternal variant was underrepresented in comparison to the normal allele. These results suggested maternal mosaicism for the variant. Additional testing on the mother was performed on buccal cell DNA, which was also consistent with mosaicism. The mother had been reported to be healthy and the family history is unremarkable. This is the first report of BOS caused by a mutation inherited from an unaffected, presumed germline mosaic parent. This phenomenon has been reported for other traditionally de novo dominant disorders like CHARGE syndrome and Cornelia de Lange syndrome. This case emphasizes the need for accurate low but non-negative recurrence risk counseling for families with children with BOS and it impacts exome interpretation strategy.


Subject(s)
Craniosynostoses/diagnosis , Craniosynostoses/genetics , Germ-Line Mutation , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Maternal Inheritance , Mutation , Phenotype , Repressor Proteins/genetics , Alleles , Child, Preschool , DNA Mutational Analysis , Exons , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Polymorphism, Single Nucleotide
4.
Genet Med ; 19(10): 1171-1178, 2017 10.
Article in English | MEDLINE | ID: mdl-28425981

ABSTRACT

PurposeThe aim of this study was to determine the diagnostic yield of whole-exome sequencing (WES) in fetuses with ultrasound anomalies that resulted in fetal demise or pregnancy termination. The results were also utilized to aid in the identification of candidate genes for fetal development and to expand the clinical phenotype of known genetic conditions.MethodsWES was performed on specimens from 84 deceased fetuses. Data were analyzed and final results were classified into one of four categories: positive, possible, negative, and candidate gene only. WES analysis was predominantly performed in fetus-parent trios or quads (61%, n=52).ResultsOverall, 20% (n = 17) of cases were positive, 45% (n=38) were possible, 9% (n=7) had only candidate gene variants and 26% (n = 22) tested negative. The diagnostic yield for definitive findings for trio analysis was 24% (n = 11) compared to 14% (n = 4) for singletons. The most frequently reported ultrasound anomalies were central nervous system (37%, n = 31), hydrops/edema (36%, n = 30), and cardiovascular anomalies (31%, n = 26).ConclusionOur experience supports the use of WES to identify the molecular etiology of fetal ultrasound anomalies, to identify candidate genes involved in fetal development, and to expand our knowledge of the clinical phenotype of known genetic conditions.


Subject(s)
Fetal Development/genetics , Prenatal Diagnosis/methods , Abortion, Induced , Exome/genetics , Female , Fetal Death/etiology , Fetus/diagnostic imaging , Humans , Male , Mutation , Phenotype , Pregnancy , Sequence Analysis, DNA/methods , Ultrasonography , Ultrasonography, Prenatal , Exome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL