Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Evolution ; 78(3): 413-422, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38069598

ABSTRACT

Most animal species have a singular developmental pathway and adult ecology, but developmental plasticity is well-known in some such as honeybees where castes display profoundly different morphology and ecology. An intriguing case is the Atlantic deep-sea hydrothermal vent shrimp pair Rimicaris hybisae and R. chacei that share dominant COI haplotypes and could represent very recently diverging lineages or even morphs of the same species. Rimicaris hybisae is symbiont-reliant with a hypertrophied head chamber (in the Mid-Cayman Spreading Centre), while R. chacei is mixotrophic with a narrow head chamber (on the Mid-Atlantic Ridge). Here, we use X-ray micro-computed tomography and fluorescence in situ hybridization to show that key anatomical shifts in both occur during the juvenile-subadult transition, when R. hybisae has fully established symbiosis but not R. chacei. On the Mid-Atlantic Ridge, the diet of R. chacei has been hypothetically linked to competition with the obligatorily symbiotic congener R. exoculata, and we find anatomical evidence that R. exoculata is indeed better adapted for symbiosis. We speculate the possibility that the distinct development trajectories in R. hybisae and R. chacei may be determined by symbiont colonization at a "critical period" before subadulthood, though further genetic studies are warranted to test this hypothesis along with the true relationship between R. hybisae and R. chacei.


Subject(s)
Decapoda , Hydrothermal Vents , Animals , Bees/genetics , Symbiosis , In Situ Hybridization, Fluorescence , X-Ray Microtomography , Decapoda/genetics , Decapoda/anatomy & histology
3.
Proc Biol Sci ; 288(1961): 20211769, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34666518

ABSTRACT

We consider the opportunities and challenges associated with organizing a conference online, using a case study of a medium-sized (approx. 400 participants) international conference held virtually in August 2020. In addition, we present quantifiable evidence of the participants' experience using the results from an online post-conference questionnaire. Although the virtual meeting was not able to replicate the in-person experience in some aspects (e.g. less engagement between participants) the overwhelming majority of respondents found the meeting an enjoyable experience and would join similar events again. Notably, there was a strong desire for future in-person meetings to have at least some online component. Online attendance by lower-income researchers was higher compared with a past, similar-themed in-person meeting held in a high-income nation, but comparable to one held in an upper-middle-income nation. This indicates that online conferences are not a panacea for diversity and inclusivity, and that holding in-person meetings in developing economies can be at least as effective. Given that it is now relatively easy to stream contents of meetings online using low-cost methods, there are clear benefits in making all presented content accessible online, as well as organizing online networking events for those unable to attend in person.


Subject(s)
COVID-19 , Humans
4.
Front Microbiol ; 11: 1636, 2020.
Article in English | MEDLINE | ID: mdl-32793148

ABSTRACT

The peripheral areas of deep-sea hydrothermal vents are often inhabited by an assemblage of animals distinct to those living close to vent chimneys. For many such taxa, it is considered that peak abundances in the vent periphery relate to the availability of hard substrate as well as the increased concentrations of organic matter generated at vents, compared to background areas. However, the peripheries of vents are less well-studied than the assemblages of vent-endemic taxa, and the mechanisms through which peripheral fauna may benefit from vent environments are generally unknown. Understanding this is crucial for evaluating the sphere of influence of hydrothermal vents and managing the impacts of future human activity within these environments, as well as offering insights into the processes of metazoan adaptation to vents. In this study, we explored the evolutionary histories, microbiomes and nutritional sources of two distantly-related sponge types living at the periphery of active hydrothermal vents in two different geological settings (Cladorhiza from the E2 vent site on the East Scotia Ridge, Southern Ocean, and Spinularia from the Endeavour vent site on the Juan de Fuca Ridge, North-East Pacific) to examine their relationship to nearby venting. Our results uncovered a close sister relationship between the majority of our E2 Cladorhiza specimens and the species Cladorhiza methanophila, known to harbor and obtain nutrition from methanotrophic symbionts at cold seeps. Our microbiome analyses demonstrated that both E2 Cladorhiza and Endeavour Spinularia sp. are associated with putative chemosynthetic Gammaproteobacteria, including Thioglobaceae (present in both sponge types) and Methylomonaceae (present in Spinularia sp.). These bacteria are closely related to chemoautotrophic symbionts of bathymodiolin mussels. Both vent-peripheral sponges demonstrate carbon and nitrogen isotopic signatures consistent with contributions to nutrition from chemosynthesis. This study expands the number of known associations between metazoans and potentially chemosynthetic Gammaproteobacteria, indicating that they can be incredibly widespread and also occur away from the immediate vicinity of chemosynthetic environments in the vent-periphery, where these sponges may be adapted to benefit from dispersed vent fluids.

5.
R Soc Open Sci ; 6(11): 191501, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31827872

ABSTRACT

Faunal assemblages at hydrothermal vents associated with island-arc volcanism are less well known than those at vents on mid-ocean ridges and back-arc spreading centres. This study characterizes chemosynthetic biotopes at active hydrothermal vents discovered at the Kemp Caldera in the South Sandwich Arc. The caldera hosts sulfur and anhydrite vent chimneys in 1375-1487 m depth, which emit sulfide-rich fluids with temperatures up to 212°C, and the microbial community of water samples in the buoyant plume rising from the vents was dominated by sulfur-oxidizing Gammaproteobacteria. A total of 12 macro- and megafaunal taxa depending on hydrothermal activity were collected in these biotopes, of which seven species were known from the East Scotia Ridge (ESR) vents and three species from vents outside the Southern Ocean. Faunal assemblages were dominated by large vesicomyid clams, actinostolid anemones, Sericosura sea spiders and lepetodrilid and cocculinid limpets, but several taxa abundant at nearby ESR hydrothermal vents were rare such as the stalked barnacle Neolepas scotiaensis. Multivariate analysis of fauna at Kemp Caldera and vents in neighbouring areas indicated that the Kemp Caldera is most similar to vent fields in the previously established Southern Ocean vent biogeographic province, showing that the species composition at island-arc hydrothermal vents can be distinct from nearby seafloor-spreading systems. δ 13C and δ 15N isotope values of megafaunal species analysed from the Kemp Caldera were similar to those of the same or related species at other vent fields, but none of the fauna sampled at Kemp Caldera had δ 13C values, indicating nutritional dependence on Epsilonproteobacteria, unlike fauna at other island-arc hydrothermal vents.

6.
Zootaxa ; 4066(1): 71-7, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-27395531

ABSTRACT

The 28th species of the eelpout genus Pachycara Zugmayer, 1911, is described from specimens collected from an active hydrothermal vent field at a depth of about 2300 m at the Mid-Cayman Spreading Centre of the Caribbean Sea. A tentatively identified early juvenile is recorded at a methane seep at a depth of 1049 m near Tobago. The new species is distinguished from its congeners mainly by its few pectoral fin rays, low vertebral counts, single, mediolateral branch of the lateral line system and presence of scales on the nape and cheeks.


Subject(s)
Perciformes/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Caribbean Region , Ecosystem , Female , Hydrothermal Vents/analysis , Male , Organ Size , Perciformes/anatomy & histology , Perciformes/growth & development
7.
Front Zool ; 12: 13, 2015.
Article in English | MEDLINE | ID: mdl-26085836

ABSTRACT

INTRODUCTION: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy. RESULTS: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts. CONCLUSIONS: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.

8.
J Anim Ecol ; 84(4): 898-913, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25732205

ABSTRACT

Few species of reptant decapod crustaceans thrive in the cold-stenothermal waters of the Southern Ocean. However, abundant populations of a new species of anomuran crab, Kiwa tyleri, occur at hydrothermal vent fields on the East Scotia Ridge. As a result of local thermal conditions at the vents, these crabs are not restricted by the physiological limits that otherwise exclude reptant decapods south of the polar front. We reveal the adult life history of this species by piecing together variation in microdistribution, body size frequency, sex ratio, and ovarian and embryonic development, which indicates a pattern in the distribution of female Kiwaidae in relation to their reproductive development. High-density 'Kiwa' assemblages observed in close proximity to sources of vent fluids are constrained by the thermal limit of elevated temperatures and the availability of resources for chemosynthetic nutrition. Although adult Kiwaidae depend on epibiotic chemosynthetic bacteria for nutrition, females move offsite after extrusion of their eggs to protect brooding embryos from the chemically harsh, thermally fluctuating vent environment. Consequently, brooding females in the periphery of the vent field are in turn restricted by low-temperature physiological boundaries of the deep-water Southern Ocean environment. Females have a high reproductive investment in few, large, yolky eggs, facilitating full lecithotrophy, with the release of larvae prolonged, and asynchronous. After embryos are released, larvae are reliant on locating isolated active areas of hydrothermal flow in order to settle and survive as chemosynthetic adults. Where the cold water restricts the ability of all adult stages to migrate over long distances, these low temperatures may facilitate the larvae in the location of vent sites by extending the larval development period through hypometabolism. These differential life-history adaptations to contrasting thermal environments lead to a disjunct life history among males and females of K. tyleri, which is key to their success in the Southern Ocean vent environment. We highlight the complexity in understanding the importance of life-history biology, in combination with environmental, ecological and physiological factors contributing to the overall global distribution of vent-endemic species.


Subject(s)
Decapoda/physiology , Hydrothermal Vents , Temperature , Adaptation, Physiological , Animals , Decapoda/embryology , Decapoda/growth & development , Embryo, Nonmammalian/physiology , Female , Larva/physiology , Life Cycle Stages/physiology , Male , Reproduction/physiology
9.
PLoS One ; 8(3): e60319, 2013.
Article in English | MEDLINE | ID: mdl-23555955

ABSTRACT

The dynamics and microdistribution of faunal assemblages at hydrothermal vents often reflect the fine-scale spatial and temporal heterogeneity of the vent environment. This study examined the reproductive development and population structure of the caridean shrimp Rimicaris hybisae at the Beebe and Von Damm Vent Fields (Mid-Cayman Spreading Centre, Caribbean) using spatially discrete samples collected in January 2012. Rimicaris hybisae is gonochoric and exhibits iteroparous reproduction. Oocyte size-frequency distributions (21-823 µm feret diameters) varied significantly among samples. Embryo development was asynchronous among females, which may result in asynchronous larval release for the populations. Specimens of R. hybisae from the Von Damm Vent Field (2294 m) were significantly larger than specimens from the Beebe Vent Field. Brooding females at Von Damm exhibited greater size-specific fecundity, possibly as a consequence of a non-linear relationship between fecundity and body size that was consistent across both vent fields. Samples collected from several locations at the Beebe Vent Field (4944-4972 m) revealed spatial variability in the sex ratios, population structure, size, and development of oocytes and embryos of this mobile species. Samples from the Von Damm Vent Field and sample J2-613-24 from Beebe Woods exhibited the highest frequencies of ovigerous females and significantly female-biased sex ratios. Environmental variables within shrimp aggregations may influence the distribution of ovigerous females, resulting in a spatially heterogeneous pattern of reproductive development in R. hybisae, as found in other vent taxa.


Subject(s)
Decapoda/physiology , Animals , Decapoda/embryology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/physiology , Female , Larva/physiology , Male , Population Dynamics , Reproduction
10.
PLoS One ; 7(10): e48348, 2012.
Article in English | MEDLINE | ID: mdl-23144754

ABSTRACT

Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m(2) of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m(-2)), followed by a peltospiroid gastropod (>1,500 individuals m(-2)), eolepadid barnacle (>1,500 individuals m(-2)), and carnivorous actinostolid anemone (>30 individuals m(-2)). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ(34)S values of primary consumers with distance from vent sources, and variation in their δ(13)C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents.


Subject(s)
Biodiversity , Ecosystem , Hydrothermal Vents , Invertebrates/growth & development , Animals , Antarctic Regions , Arthropods/growth & development , Carbon Isotopes/metabolism , Cnidaria/growth & development , Echinodermata/growth & development , Fishes/growth & development , Gastropoda/growth & development , Geography , Invertebrates/classification , Oceans and Seas , Species Specificity , Sulfur Isotopes/metabolism , Temperature , Thoracica/growth & development , Video Recording
11.
Nat Commun ; 3: 620, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22233630

ABSTRACT

The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.


Subject(s)
Hydrothermal Vents , Water Microbiology , Animals , Biota , Caribbean Region , Decapoda , Ecosystem , Geography , Hot Temperature , Molecular Sequence Data , Oceans and Seas , Phylogeny , Polymerase Chain Reaction , Seawater , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...