Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Mol Cancer ; 23(1): 40, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38383439

ABSTRACT

Finding effective therapeutic targets to treat NRAS-mutated melanoma remains a challenge. Long non-coding RNAs (lncRNAs) recently emerged as essential regulators of tumorigenesis. Using a discovery approach combining experimental models and unbiased computational analysis complemented by validation in patient biospecimens, we identified a nuclear-enriched lncRNA (AC004540.4) that is upregulated in NRAS/MAPK-dependent melanoma, and that we named T-RECS. Considering potential innovative treatment strategies, we designed antisense oligonucleotides (ASOs) to target T-RECS. T-RECS ASOs reduced the growth of melanoma cells and induced apoptotic cell death, while having minimal impact on normal primary melanocytes. Mechanistically, treatment with T-RECS ASOs downregulated the activity of pro-survival kinases and reduced the protein stability of hnRNPA2/B1, a pro-oncogenic regulator of MAPK signaling. Using patient- and cell line- derived tumor xenograft mouse models, we demonstrated that systemic treatment with T-RECS ASOs significantly suppressed the growth of melanoma tumors, with no noticeable toxicity. ASO-mediated T-RECS inhibition represents a promising RNA-targeting approach to improve the outcome of MAPK pathway-activated melanoma.


Subject(s)
Melanoma , RNA, Long Noncoding , Humans , Mice , Animals , Melanoma/pathology , RNA, Long Noncoding/genetics , Apoptosis/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Cell Line, Tumor , Membrane Proteins/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
2.
Res Sq ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38077055

ABSTRACT

Finding effective therapeutic targets to treat NRAS-mutated melanoma remains a challenge. Long non-coding RNAs (lncRNAs) recently emerged as essential regulators of tumorigenesis. Using a discovery approach combining experimental models and unbiased computational analysis complemented by validation in patient biospecimens, we identified a nuclear-enriched lncRNA (AC004540.4) that is upregulated in NRAS/MAPK-dependent melanoma, and that we named T-RECS. Considering potential innovative treatment strategies, we designed antisense oligonucleotides (ASOs) to target T-RECS. T-RECS ASOs reduced the growth of melanoma cells and induced apoptotic cell death, while having minimal impacton normal primary melanocytes. Mechanistically, treatment with T-RECS ASOs downregulated the activity of pro-survival kinases and reduced the protein stability of hnRNPA2/B1, a pro-oncogenic regulator of MAPK signaling. Using patient- and cell line- derived tumor xenograft mouse models, we demonstrated that systemic treatment with T-RECS ASOs significantly suppressed the growth of melanoma tumors, with no noticeable toxicity. ASO-mediated T-RECS inhibition represents a promising RNA-targeting approach to improve the outcome of MAPK pathway-activated melanoma.

3.
Cell Rep Med ; 4(12): 101312, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38086377

ABSTRACT

Molecular subtyping of breast cancer is based mostly on HR/HER2 and gene expression-based immune, DNA repair deficiency, and luminal signatures. We extend this description via functional protein pathway activation mapping using pre-treatment, quantitative expression data from 139 proteins/phosphoproteins from 736 patients across 8 treatment arms of the I-SPY 2 Trial (ClinicalTrials.gov: NCT01042379). We identify predictive fit-for-purpose, mechanism-of-action-based signatures and individual predictive protein biomarker candidates by evaluating associations with pathologic complete response. Elevated levels of cyclin D1, estrogen receptor alpha, and androgen receptor S650 associate with non-response and are biomarkers for global resistance. We uncover protein/phosphoprotein-based signatures that can be utilized both for molecularly rationalized therapeutic selection and for response prediction. We introduce a dichotomous HER2 activation response predictive signature for stratifying triple-negative breast cancer patients to either HER2 or immune checkpoint therapy response as a model for how protein activation signatures provide a different lens to view the molecular landscape of breast cancer and synergize with transcriptomic-defined signatures.


Subject(s)
Drug Resistance, Neoplasm , Triple Negative Breast Neoplasms , Humans , Drug Resistance, Neoplasm/genetics , Neoadjuvant Therapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Biomarkers , Gene Expression Profiling
4.
Breast Cancer Res ; 25(1): 117, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794508

ABSTRACT

BACKGROUND: Despite major improvements in treatment of HER2-positive metastatic breast cancer (MBC), only few patients achieve complete remission and remain progression free for a prolonged time. The tumor immune microenvironment plays an important role in the response to treatment in HER2-positive breast cancer and could contain valuable prognostic information. Detailed information on the cancer-immune cell interactions in HER2-positive MBC is however still lacking. By characterizing the tumor immune microenvironment in patients with HER2-positive MBC, we aimed to get a better understanding why overall survival (OS) differs so widely and which alternative treatment approaches may improve outcome. METHODS: We included all patients with HER2-positive MBC who were treated with trastuzumab-based palliative therapy in the Netherlands Cancer Institute between 2000 and 2014 and for whom pre-treatment tissue from the primary tumor or from metastases was available. Infiltrating immune cells and their spatial relationships to one another and to tumor cells were characterized by immunohistochemistry and multiplex immunofluorescence. We also evaluated immune signatures and other key pathways using next-generation RNA-sequencing data. With nine years median follow-up from initial diagnosis of MBC, we investigated the association between tumor and immune characteristics and outcome. RESULTS: A total of 124 patients with 147 samples were included and evaluated. The different technologies showed high correlations between each other. T-cells were less prevalent in metastases compared to primary tumors, whereas B-cells and regulatory T-cells (Tregs) were comparable between primary tumors and metastases. Stromal tumor-infiltrating lymphocytes in general were not associated with OS. The infiltration of B-cells and Tregs in the primary tumor was associated with unfavorable OS. Four signatures classifying the extracellular matrix of primary tumors showed differential survival in the population as a whole. CONCLUSIONS: In a real-world cohort of 124 patients with HER2-positive MBC, B-cells, and Tregs in primary tumors are associated with unfavorable survival. With this paper, we provide a comprehensive insight in the tumor immune microenvironment that could guide further research into development of novel immunomodulatory strategies.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism , T-Lymphocytes, Regulatory , Trastuzumab , Prognosis , Antineoplastic Combined Chemotherapy Protocols , Tumor Microenvironment
5.
J Clin Invest ; 133(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37751299

ABSTRACT

The B cell leukemia/lymphoma 2 (BCL-2) inhibitor venetoclax is effective in chronic lymphocytic leukemia (CLL); however, resistance may develop over time. Other lymphoid malignancies such as diffuse large B cell lymphoma (DLBCL) are frequently intrinsically resistant to venetoclax. Although genomic resistance mechanisms such as BCL2 mutations have been described, this probably only explains a subset of resistant cases. Using 2 complementary functional precision medicine techniques - BH3 profiling and high-throughput kinase activity mapping - we found that hyperphosphorylation of BCL-2 family proteins, including antiapoptotic myeloid leukemia 1 (MCL-1) and BCL-2 and proapoptotic BCL-2 agonist of cell death (BAD) and BCL-2 associated X, apoptosis regulator (BAX), underlies functional mechanisms of both intrinsic and acquired resistance to venetoclax in CLL and DLBCL. Additionally, we provide evidence that antiapoptotic BCL-2 family protein phosphorylation altered the apoptotic protein interactome, thereby changing the profile of functional dependence on these prosurvival proteins. Targeting BCL-2 family protein phosphorylation with phosphatase-activating drugs rewired these dependencies, thus restoring sensitivity to venetoclax in a panel of venetoclax-resistant lymphoid cell lines, a resistant mouse model, and in paired patient samples before venetoclax treatment and at the time of progression.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Mice , Animals , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , bcl-X Protein/genetics , Apoptosis Regulatory Proteins , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism
6.
Nat Cancer ; 4(2): 240-256, 2023 02.
Article in English | MEDLINE | ID: mdl-36759733

ABSTRACT

BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through ß-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Cyclooxygenase 2/genetics , Cyclooxygenase 2/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , MAP Kinase Signaling System , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , src-Family Kinases/genetics , src-Family Kinases/therapeutic use
7.
Cancer Cell ; 40(6): 609-623.e6, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35623341

ABSTRACT

Using pre-treatment gene expression, protein/phosphoprotein, and clinical data from the I-SPY2 neoadjuvant platform trial (NCT01042379), we create alternative breast cancer subtypes incorporating tumor biology beyond clinical hormone receptor (HR) and human epidermal growth factor receptor-2 (HER2) status to better predict drug responses. We assess the predictive performance of mechanism-of-action biomarkers from ∼990 patients treated with 10 regimens targeting diverse biology. We explore >11 subtyping schemas and identify treatment-subtype pairs maximizing the pathologic complete response (pCR) rate over the population. The best performing schemas incorporate Immune, DNA repair, and HER2/Luminal phenotypes. Subsequent treatment allocation increases the overall pCR rate to 63% from 51% using HR/HER2-based treatment selection. pCR gains from reclassification and improved patient selection are highest in HR+ subsets (>15%). As new treatments are introduced, the subtyping schema determines the minimum response needed to show efficacy. This data platform provides an unprecedented resource and supports the usage of response-based subtypes to guide future treatment prioritization.


Subject(s)
Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Humans , Neoadjuvant Therapy , Receptor, ErbB-2/genetics , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism
8.
Front Oncol ; 12: 1074726, 2022.
Article in English | MEDLINE | ID: mdl-36698391

ABSTRACT

BRAFV600E represents the most common BRAF mutation in all human cancers. Among central nervous system (CNS) tumors, BRAFV600E is mostly found in pediatric low-grade gliomas (pLGG, ~20%) and, less frequently, in pediatric high-grade gliomas (pHGG, 5-15%) and adult glioblastomas (GBM, ~5%). The integration of BRAF inhibitors (BRAFi) in the treatment of patients with gliomas brought a paradigm shift to clinical care. However, not all patients benefit from treatment due to intrinsic or acquired resistance to BRAF inhibition. Defining predictors of response, as well as developing strategies to prevent resistance to BRAFi and overcome post-BRAFi tumor progression/rebound growth are some of the main challenges at present in the field. In this review, we outline current achievements and limitations of BRAF inhibition in gliomas, with a special focus on potential mechanisms of resistance. We discuss future directions of targeted therapy for BRAFV600E mutated gliomas, highlighting how insights into resistance to BRAFi could be leveraged to improve outcomes.

9.
Science ; 374(6563): eabf3066, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591612

ABSTRACT

Cancers have been associated with a diverse array of genomic alterations. To help mechanistically understand such alterations in breast-invasive carcinoma, we applied affinity purification­mass spectrometry to delineate comprehensive biophysical interaction networks for 40 frequently altered breast cancer (BC) proteins, with and without relevant mutations, across three human breast cell lines. These networks identify cancer-specific protein-protein interactions (PPIs), interconnected and enriched for common and rare cancer mutations, that are substantially rewired by the introduction of key BC mutations. Our analysis identified BPIFA1 and SCGB2A1 as PIK3CA-interacting proteins, which repress PI3K-AKT signaling, and uncovered USP28 and UBE2N as functionally relevant interactors of BRCA1. We also show that the protein phosphatase 1 regulatory subunit spinophilin interacts with and regulates dephosphorylation of BRCA1 to promote DNA double-strand break repair. Thus, PPI landscapes provide a powerful framework for mechanistically interpreting disease genomic data and can identify valuable therapeutic targets.


Subject(s)
Breast Neoplasms/metabolism , Neoplasm Proteins/metabolism , Protein Interaction Maps , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Humans , Mass Spectrometry , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/isolation & purification , Tandem Affinity Purification
10.
EMBO Rep ; 21(10): e50718, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32785991

ABSTRACT

Senescent cells display senescence-associated (SA) phenotypic programs such as stable proliferation arrest (SAPA) and a secretory phenotype (SASP). Senescence-inducing persistent DNA double-strand breaks (pDSBs) cause an immediate DNA damage response (DDR) and SAPA, but the SASP requires days to develop. Here, we show that following the immediate canonical DDR, a delayed chromatin accumulation of the ATM and MRN complexes coincides with the expression of SASP factors. Importantly, histone deacetylase inhibitors (HDACi) trigger SAPA and SASP in the absence of DNA damage. However, HDACi-induced SASP also requires ATM/MRN activities and causes their accumulation on chromatin, revealing a DNA damage-independent, non-canonical DDR activity that underlies SASP maturation. This non-canonical DDR is required for the recruitment of the transcription factor NF-κB on chromatin but not for its nuclear translocation. Non-canonical DDR further does not require ATM kinase activity, suggesting structural ATM functions. We propose that delayed chromatin recruitment of SASP modulators is the result of non-canonical DDR signaling that ensures SASP activation only in the context of senescence and not in response to transient DNA damage-induced proliferation arrest.


Subject(s)
Cellular Senescence , NF-kappa B , Cellular Senescence/genetics , Chromatin/genetics , DNA Damage , NF-kappa B/metabolism , Signal Transduction
11.
Aging Cell ; 18(6): e13027, 2019 12.
Article in English | MEDLINE | ID: mdl-31493351

ABSTRACT

Aging is characterized by a progressive loss of physiological integrity, while cancer represents one of the primary pathological factors that severely threaten human lifespan and healthspan. In clinical oncology, drug resistance limits the efficacy of most anticancer treatments, and identification of major mechanisms remains a key to solve this challenging issue. Here, we highlight the multifaceted senescence-associated secretory phenotype (SASP), which comprises numerous soluble factors including amphiregulin (AREG). Production of AREG is triggered by DNA damage to stromal cells, which passively enter senescence in the tumor microenvironment (TME), a process that remarkably enhances cancer malignancy including acquired resistance mediated by EGFR. Furthermore, paracrine AREG induces programmed cell death 1 ligand (PD-L1) expression in recipient cancer cells and creates an immunosuppressive TME via immune checkpoint activation against cytotoxic lymphocytes. Targeting AREG not only minimized chemoresistance of cancer cells, but also restored immunocompetency when combined with classical chemotherapy in humanized animals. Our study underscores the potential of in vivo SASP in driving the TME-mediated drug resistance and shaping an immunosuppressive niche, and provides the proof of principle of targeting major SASP factors to improve therapeutic outcome in cancer medicine, the success of which can substantially reduce aging-related morbidity and mortality.


Subject(s)
Amphiregulin/immunology , B7-H1 Antigen/immunology , Cellular Senescence/immunology , Stromal Cells/immunology , Amphiregulin/genetics , Animals , Antineoplastic Agents/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Cells, Cultured , Cellular Senescence/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Stromal Cells/drug effects , Tumor Microenvironment/drug effects
12.
JCI Insight ; 52019 06 11.
Article in English | MEDLINE | ID: mdl-31184599

ABSTRACT

Cellular senescence is a tumor suppressive mechanism that can paradoxically contribute to aging pathologies. Despite evidence of immune clearance in mouse models, it is not known how senescent cells (SnCs) persist and accumulate with age or in tumors in individuals. Here, we identify cooperative mechanisms that orchestrate the immunoevasion and persistence of normal and cancer human SnCs through extracellular targeting of natural killer receptor signaling. Damaged SnCs avoid immune recognition through MMPs-dependent shedding of NKG2D-ligands reinforced via paracrine suppression of NKG2D receptor-mediated immunosurveillance. These coordinated immunoediting processes are evident in residual, drug-resistant tumors from cohorts of >700 prostate and breast cancer patients treated with senescence-inducing genotoxic chemotherapies. Unlike in mice, these reversible senescence-subversion mechanisms are independent of p53/p16 and exacerbated in oncogenic RAS-induced senescence. Critically, the p16INK4A tumor suppressor can disengage the senescence growth arrest from the damage-associated immune senescence program, which is manifest in benign nevi lesions where indolent SnCs accumulate over time and preserve a non-pro-inflammatory tissue microenvironment maintaining NKG2D-mediated immunosurveillance. Our study shows how subpopulations of SnCs elude immunosurveillance, and reveals secretome-targeted therapeutic strategies to selectively eliminate -and restore the clearance of- the detrimental SnCs that actively persist after chemotherapy and accumulate at sites of aging pathologies.


Subject(s)
Aging/immunology , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cellular Senescence/immunology , Drug Resistance, Neoplasm/immunology , Prostatic Neoplasms/drug therapy , Tumor Escape/immunology , Aging/pathology , Animals , Antineoplastic Agents/therapeutic use , Biopsy , Breast/pathology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA Damage/drug effects , Datasets as Topic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunologic Surveillance/drug effects , Immunologic Surveillance/immunology , Male , Metalloendopeptidases/metabolism , Mice , NK Cell Lectin-Like Receptor Subfamily K/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily K/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Prostate/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Tissue Array Analysis , Tumor Escape/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
13.
Nat Cell Biol ; 21(6): 778-790, 2019 06.
Article in English | MEDLINE | ID: mdl-31160710

ABSTRACT

Phosphorylation networks intimately regulate mechanisms of response to therapies. Mapping the phospho-catalytic profile of kinases in cells or tissues remains a challenge. Here, we introduce a practical high-throughput system to measure the enzymatic activity of kinases using biological peptide targets as phospho-sensors to reveal kinase dependencies in tumour biopsies and cell lines. A 228-peptide screen was developed to detect the activity of >60 kinases, including ABLs, AKTs, CDKs and MAPKs. Focusing on BRAFV600E tumours, we found mechanisms of intrinsic resistance to BRAFV600E-targeted therapy in colorectal cancer, including targetable parallel activation of PDPK1 and PRKCA. Furthermore, mapping the phospho-catalytic signatures of melanoma specimens identifies RPS6KB1 and PIM1 as emerging druggable vulnerabilities predictive of poor outcome in BRAFV600E patients. The results show that therapeutic resistance can be caused by the concerted upregulation of interdependent pathways. Our kinase activity-mapping system is a versatile strategy that innovates the exploration of actionable kinases for precision medicine.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/genetics , Colorectal Neoplasms/drug therapy , Melanoma/drug therapy , Protein Kinase C-alpha/genetics , Proto-Oncogene Proteins c-pim-1/genetics , Adult , Aged , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoles/chemistry , Kaplan-Meier Estimate , MAP Kinase Signaling System/genetics , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Peptides/chemistry , Peptides/therapeutic use , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/therapeutic use
14.
Nat Commun ; 9(1): 4315, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30333494

ABSTRACT

Chemotherapy and radiation not only trigger cancer cell apoptosis but also damage stromal cells in the tumour microenvironment (TME), inducing a senescence-associated secretory phenotype (SASP) characterized by chronic secretion of diverse soluble factors. Here we report serine protease inhibitor Kazal type I (SPINK1), a SASP factor produced in human stromal cells after genotoxic treatment. DNA damage causes SPINK1 expression by engaging NF-κB and C/EBP, while paracrine SPINK1 promotes cancer cell aggressiveness particularly chemoresistance. Strikingly, SPINK1 reprograms the expression profile of cancer cells, causing prominent epithelial-endothelial transition (EET), a phenotypic switch mediated by EGFR signaling but hitherto rarely reported for a SASP factor. In vivo, SPINK1 is expressed in the stroma of solid tumours and is routinely detectable in peripheral blood of cancer patients after chemotherapy. Our study substantiates SPINK1 as both a targetable SASP factor and a novel noninvasive biomarker of therapeutically damaged TME for disease control and clinical surveillance.


Subject(s)
Cellular Senescence , Drug Resistance, Neoplasm , Trypsin Inhibitor, Kazal Pancreatic/metabolism , Tumor Microenvironment , Biomarkers/metabolism , Cell Line, Tumor , DNA Damage , Humans , NF-kappa B/metabolism , Paracrine Communication , Phenotype , Transcriptome
15.
Trends Mol Med ; 24(10): 871-885, 2018 10.
Article in English | MEDLINE | ID: mdl-30153969

ABSTRACT

Cellular senescence is a process that results in irreversible cell-cycle arrest, and is thought to be an autonomous tumor-suppressor mechanism. During senescence, cells develop distinctive metabolic and signaling features, together referred to as the senescence-associated secretory phenotype (SASP). The SASP is implicated in several aging-related pathologies, including various malignancies. Accumulating evidence argues that cellular senescence acts as a double-edged sword in human cancer, and new agents and innovative strategies to tackle senescent cells are in development pipelines to counter the adverse effects of cellular senescence in the clinic. We focus on recent discoveries in senescence research and SASP biology, and highlight the potential of SASP suppression and senescent cell clearance in advancing precision medicine.


Subject(s)
Cellular Senescence/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics , Neoplasms/genetics , Precision Medicine/methods , Antineoplastic Agents/therapeutic use , Cell Cycle Checkpoints/drug effects , Cell Division/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cellular Senescence/drug effects , Cytokines/genetics , Cytokines/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phenotype , Protein Kinases/genetics , Protein Kinases/metabolism , Signal Transduction , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
16.
Breast Cancer Res ; 19(1): 107, 2017 Sep 11.
Article in English | MEDLINE | ID: mdl-28893315

ABSTRACT

BACKGROUND: Poly(ADP-ribose) polymerase inhibitors (PARPi), coupled to a DNA damaging agent is a promising approach to treating triple negative breast cancer (TNBC). However, not all patients respond; we hypothesize that non-response in some patients may be due to insufficient drug penetration. As a first step to testing this hypothesis, we quantified and visualized veliparib and carboplatin penetration in mouse xenograft TNBCs and patient blood samples. METHODS: MDA-MB-231, HCC70 or MDA-MB-436 human TNBC cells were implanted in 41 beige SCID mice. Low dose (20 mg/kg) or high dose (60 mg/kg) veliparib was given three times daily for three days, with carboplatin (60 mg/kg) administered twice. In addition, blood samples were analyzed from 19 patients from a phase 1 study of carboplatin + PARPi talazoparib. Veliparib and carboplatin was quantified using liquid chromatography-mass spectrometry (LC-MS). Veliparib tissue penetration was visualized using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) and platinum adducts (covalent nuclear DNA-binding) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Pharmacokinetic modeling and Pearson's correlation were used to explore associations between concentrations in plasma, tumor cells and peripheral blood mononuclear cells (PBMCs). RESULTS: Veliparib penetration in xenograft tumors was highly heterogeneous between and within tumors. Only 35% (CI 95% 26-44%), 74% (40-97%) and 46% (9-37%) of veliparib observed in plasma penetrated into MDA-MB-231, HCC70 and MDA-MB-436 cell-based xenografts, respectively. Within tumors, penetration heterogeneity was larger with the 60 mg/kg compared to the 20 mg/kg dose (RSD 155% versus 255%, P = 0.001). These tumor concentrations were predicted similar to clinical dosing levels, but predicted tumor concentrations were below half maximal concentration values as threshold of response. Xenograft veliparib concentrations correlated positively with platinum adduct formation (R 2 = 0.657), but no PARPi-platinum interaction was observed in patients' PBMCs. Platinum adduct formation was significantly higher in five gBRCA carriers (ratio of platinum in DNA in PBMCs/plasma 0.64% (IQR 0.60-1.16%) compared to nine non-carriers (ratio 0.29% (IQR 0.21-0.66%, P < 0.0001). CONCLUSIONS: PARPi/platinum tumor penetration can be measured by MALDI-MSI and ICP-MS in PBMCs and fresh frozen, OCT embedded core needle biopsies. Large variability in platinum adduct formation and spatial heterogeneity in veliparib distribution may lead to insufficient drug exposure in select cell populations.


Subject(s)
Benzimidazoles/administration & dosage , Carboplatin/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Animals , Benzimidazoles/chemistry , Carboplatin/chemistry , Cell Line, Tumor , Female , Humans , Leukocytes, Mononuclear/drug effects , Mice , Penetrance , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
17.
Cancer Res ; 76(7): 1733-45, 2016 04 01.
Article in English | MEDLINE | ID: mdl-26921330

ABSTRACT

Kinase inhibitors are used widely to treat various cancers, but adaptive reprogramming of kinase cascades and activation of feedback loop mechanisms often contribute to therapeutic resistance. Determining comprehensive, accurate maps of kinase circuits may therefore help elucidate mechanisms of response and resistance to kinase inhibitor therapies. In this study, we identified and validated phosphorylatable target sites across human cell and tissue types to generate PhosphoAtlas, a map of 1,733 functionally interconnected proteins comprising the human phospho-reactome. A systematic curation approach was used to distill protein phosphorylation data cross-referenced from 38 public resources. We demonstrated how a catalog of 2,617 stringently verified heptameric peptide regions at the catalytic interface of kinases and substrates could expose mutations that recurrently perturb specific phospho-hubs. In silico mapping of 2,896 nonsynonymous tumor variants identified from thousands of tumor tissues also revealed that normal and aberrant catalytic interactions co-occur frequently, showing how tumors systematically hijack, as well as spare, particular subnetworks. Overall, our work provides an important new resource for interrogating the human tumor kinome to strategically identify therapeutically actionable kinase networks that drive tumorigenesis. Cancer Res; 76(7); 1733-45. ©2016 AACR.


Subject(s)
Neoplasms/genetics , Humans , Mutation , Phosphorylation , Signal Transduction
18.
Proc Natl Acad Sci U S A ; 110(32): E2977-86, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23882083

ABSTRACT

Activation-induced cytidine deaminase (AID), which functions in antibody diversification, is also expressed in a variety of germ and somatic cells. Evidence that AID promotes DNA demethylation in epigenetic reprogramming phenomena, and that it is induced by inflammatory signals, led us to investigate its role in the epithelial-mesenchymal transition (EMT), a critical process in normal morphogenesis and tumor metastasis. We find that expression of AID is induced by inflammatory signals that induce the EMT in nontransformed mammary epithelial cells and in ZR75.1 breast cancer cells. shRNA-mediated knockdown of AID blocks induction of the EMT and prevents cells from acquiring invasive properties. Knockdown of AID suppresses expression of several key EMT transcriptional regulators and is associated with increased methylation of CpG islands proximal to the promoters of these genes; furthermore, the DNA demethylating agent 5 aza-2'deoxycytidine (5-Aza-dC) antagonizes the effects of AID knockdown on the expression of EMT factors. We conclude that AID is necessary for the EMT in this breast cancer cell model and in nontransformed mammary epithelial cells. Our results suggest that AID may act near the apex of a hierarchy of regulatory steps that drive the EMT, and are consistent with this effect being mediated by cytosine demethylation. This evidence links our findings to other reports of a role for AID in epigenetic reprogramming and control of gene expression.


Subject(s)
Cytidine Deaminase/genetics , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Cell Movement/genetics , CpG Islands/genetics , Cytidine Deaminase/metabolism , DNA Methylation , Decitabine , Epithelial Cells/drug effects , Genetic Complementation Test , HEK293 Cells , Humans , Mammary Glands, Human/cytology , Mammary Glands, Human/metabolism , Matrix Metalloproteinases/genetics , Mice , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
19.
J Cell Biol ; 201(4): 613-29, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23649808

ABSTRACT

Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.


Subject(s)
Gene Expression Regulation , HMGB1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Cell Proliferation , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cytokines/metabolism , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Humans , Inflammation , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Tumor Suppressor Proteins/metabolism
20.
J Biol Chem ; 286(42): 36396-403, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21880712

ABSTRACT

Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16(INK4a), a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16(INK4a) and another cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16(INK4a). Cells induced to senesce by ectopic p16(INK4a) expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16(INK4a) by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16(INK4a) in suppressing the SASP. These findings suggest that p16(INK4a)-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16(INK4a) activation or senescence per se, but rather is a damage response that is separable from the growth arrest.


Subject(s)
Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Epithelial Cells/metabolism , Fibroblasts/metabolism , Paracrine Communication/physiology , Cells, Cultured , Cellular Senescence/radiation effects , Coculture Techniques , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage/drug effects , DNA Damage/physiology , Epithelial Cells/cytology , Fibroblasts/cytology , Humans , Paracrine Communication/drug effects , Radiation, Ionizing
SELECTION OF CITATIONS
SEARCH DETAIL
...