Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Commun Biol ; 5(1): 280, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35351968

ABSTRACT

Pharmacological activation of brown adipose tissue (BAT) is an attractive approach for increasing energy expenditure to counteract obesity. Given the side-effects of known activators of BAT, we studied inhibitors of BAT as a novel, alternative concept to regulate energy expenditure. We focused on G-protein-coupled receptors that are one of the major targets of clinically used drugs. Here, we identify GPR183, also known as EBI2, as the most highly expressed inhibitory G-protein-coupled receptor in BAT among the receptors examined. Activation of EBI2 using its endogenous ligand 7α,25-dihydroxycholesterol significantly decreases BAT-mediated energy expenditure in mice. In contrast, mice deficient for EBI2 show increased energy dissipation in response to cold. Interestingly, only thermogenic adipose tissue depots - BAT and subcutaneous white adipose tissue -respond to 7α,25-dihydroxycholesterol treatment/EBI2 activation but not gonadal white fat, which has the lowest thermogenic capacity. EBI2 activation in brown adipocytes significantly reduces norepinephrine-induced cAMP production, whereas pharmacological inhibition or genetic ablation of EBI2 results in an increased response. Importantly, EBI2 significantly inhibits norepinephrine-induced activation of human brown adipocytes. Our data identify the 7α,25-dihydroxycholesterol/EBI2 signaling pathway as a so far unknown BAT inhibitor. Understanding the inhibitory regulation of BAT might lead to novel pharmacological approaches to increase the activity of thermogenic adipose tissue and whole body energy expenditure in humans.


Subject(s)
Adipocytes, Brown , Adipose Tissue, Brown , Energy Metabolism , Receptors, G-Protein-Coupled , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Animals , Humans , Mice , Norepinephrine/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Thermogenesis
3.
Biol Psychiatry ; 91(10): 879-887, 2022 05 15.
Article in English | MEDLINE | ID: mdl-34344535

ABSTRACT

Obesity and mood disorders are often overlapping pathologies that are prevalent public health concerns. Many studies have indicated a positive correlation between depression and obesity, although weight loss and decreased appetite are also recognized as features of depression. Accordingly, DSM-5 defines two subtypes of depression associated with changes in feeding: melancholic depression, characterized by anhedonia and associated with decreased feeding and appetite; and atypical depression, characterized by fatigue, sleepiness, hyperphagia, and weight gain. The central nervous system plays a key role in the regulation of feeding and mood, thus suggesting that overlapping neuronal circuits may be involved in their modulation. However, these circuits have yet to be completely characterized. The central melanocortin system, a circuitry characterized by the expression of specific peptides (pro-opiomelanocortins, agouti-related protein, and neuropeptide Y) and their melanocortin receptors, has been shown to be a key player in the regulation of feeding. In addition, the melanocortin system has also been shown to affect anxiety and depressive-like behavior, thus suggesting a possible role of the melanocortin system as a biological substrate linking feeding and depression. However, more studies are needed to fully understand this complex system and its role in regulating metabolic and mood disorders. In this review, we will discuss the current literature on the role of the melanocortin system in human and animal models in feeding and mood regulation, providing evidence of the biological interplay between anxiety, major depressive disorders, appetite, and body weight regulation.


Subject(s)
Depressive Disorder, Major , Melanocortins , Animals , Energy Metabolism/physiology , Melanocortins/metabolism , Mood Disorders , Neuropeptide Y/metabolism , Obesity/metabolism
4.
Front Physiol ; 12: 725709, 2021.
Article in English | MEDLINE | ID: mdl-34512392

ABSTRACT

Increasing evidence indicates that the melanocortin system is not only a central player in energy homeostasis, food intake and glucose level regulation, but also in the modulation of cardiovascular functions, such as blood pressure and heart rate. The melanocortins, and in particular α- and γ-MSH, have been shown to exert their cardiovascular activity both at the central nervous system level and in the periphery (e.g., in the adrenal gland), binding their receptors MC3R and MC4R and influencing the activity of the sympathetic nervous system. In addition, some studies have shown that the activation of MC3R and MC4R by their endogenous ligands is able to improve the outcome of cardiovascular diseases, such as myocardial and cerebral ischemia. In this brief review, we will discuss the current knowledge of how the melanocortin system influences essential cardiovascular functions, such as blood pressure and heart rate, and its protective role in ischemic events, with a particular focus on the central regulation of such mechanisms.

5.
Cell Metab ; 32(1): 56-70.e7, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32589947

ABSTRACT

The combination of aging populations with the obesity pandemic results in an alarming rise in non-communicable diseases. Here, we show that the enigmatic adenosine A2B receptor (A2B) is abundantly expressed in skeletal muscle (SKM) as well as brown adipose tissue (BAT) and might be targeted to counteract age-related muscle atrophy (sarcopenia) as well as obesity. Mice with SKM-specific deletion of A2B exhibited sarcopenia, diminished muscle strength, and reduced energy expenditure (EE), whereas pharmacological A2B activation counteracted these processes. Adipose tissue-specific ablation of A2B exacerbated age-related processes and reduced BAT EE, whereas A2B stimulation ameliorated obesity. In humans, A2B expression correlated with EE in SKM, BAT activity, and abundance of thermogenic adipocytes in white fat. Moreover, A2B agonist treatment increased EE from human adipocytes, myocytes, and muscle explants. Mechanistically, A2B forms heterodimers required for adenosine signaling. Overall, adenosine/A2B signaling links muscle and BAT and has both anti-aging and anti-obesity potential.


Subject(s)
Aging/metabolism , Obesity/metabolism , Receptor, Adenosine A2B/metabolism , Adolescent , Adult , Animals , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Receptor, Adenosine A2B/deficiency , Signal Transduction , Young Adult
6.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31027998

ABSTRACT

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Subject(s)
Dinoprostone/analogs & derivatives , Dinoprostone/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Intra-Abdominal Fat/immunology , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , 3T3 Cells , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , HEK293 Cells , Homeostasis/immunology , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Insulin Resistance/genetics , Intra-Abdominal Fat/cytology , Jurkat Cells , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , STAT5 Transcription Factor/metabolism
7.
Nat Commun ; 9(1): 5232, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30542075

ABSTRACT

PI3K activation plays a central role in the development of pulmonary inflammation and tissue remodeling. PI3K inhibitors may thus offer an improved therapeutic opportunity to treat non-resolving lung inflammation but their action is limited by unwanted on-target systemic toxicity. Here we present CL27c, a prodrug pan-PI3K inhibitor designed for local therapy, and investigate whether inhaled CL27c is effective in asthma and pulmonary fibrosis. Mice inhaling CL27c show reduced insulin-evoked Akt phosphorylation in lungs, but no change in other tissues and no increase in blood glycaemia, in line with a local action. In murine models of acute or glucocorticoid-resistant neutrophilic asthma, inhaled CL27c reduces inflammation and improves lung function. Finally, inhaled CL27c administered in a therapeutic setting protects from bleomycin-induced lung fibrosis, ultimately leading to significantly improved survival. Therefore, local delivery of a pan-PI3K inhibitor prodrug reduces systemic on-target side effects but effectively treats asthma and irreversible pulmonary fibrosis.


Subject(s)
Asthma/drug therapy , Benzene Derivatives/therapeutic use , Enzyme Inhibitors/therapeutic use , Esters/therapeutic use , Phosphoinositide-3 Kinase Inhibitors , Pulmonary Fibrosis/drug therapy , Administration, Inhalation , Animals , Asthma/chemically induced , Asthma/pathology , Benzene Derivatives/administration & dosage , Bleomycin/toxicity , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Esters/administration & dosage , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Ovalbumin/toxicity , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology
8.
Nat Chem Biol ; 14(8): 801-810, 2018 08.
Article in English | MEDLINE | ID: mdl-29915378

ABSTRACT

Directional transport of recycling cargo from early endosomes (EE) to the endocytic recycling compartment (ERC) relies on phosphatidylinositol 3-phosphate (PtdIns(3)P) hydrolysis and activation of the small GTPase Rab11. However, how these events are coordinated is yet unclear. By using a novel genetically-encoded FRET biosensor for Rab11, we report that generation of endosomal PtdIns(3)P by the clathrin-binding phosphoinositide 3-kinase class 2 alpha (PI3K-C2α) controls the activation of Rab11. Active Rab11, in turn, prompts the recruitment of the phosphatidylinositol 3-phosphatase myotubularin 1 (MTM1), eventually enabling the release of recycling cargo from the EE and its delivery toward the ERC. Our findings thus define that delivery of recycling cargo toward the ERC requires spatial and sequential coupling of Rab11 activity with PtdIns(3)P turnover.


Subject(s)
Endosomes/metabolism , rab GTP-Binding Proteins/metabolism , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans , Phosphoric Monoester Hydrolases/metabolism
9.
Sci Signal ; 9(459): ra124, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27999173

ABSTRACT

Mobilization of neutrophils from the bone marrow determines neutrophil blood counts and thus is medically important. Balanced neutrophil mobilization from the bone marrow depends on the retention-promoting chemokine CXCL12 and its receptor CXCR4 and the egression-promoting chemokine CXCL2 and its receptor CXCR2. Both pathways activate the small guanosine triphosphatase Rac, leaving the role of this signaling event in neutrophil retention and egression ambiguous. On the assumption that active Rac determines persistent directional cell migration, we generated a mathematical model to link chemokine-mediated Rac modulation to neutrophil egression time. Our computer simulation indicated that, in the bone marrow, where the retention signal predominated, egression time strictly depended on the time it took Rac to return to its basal activity (namely, adaptation). This prediction was validated in mice lacking the Rac inhibitor ArhGAP15. Neutrophils in these mice showed prolonged Rac adaptation and cell-autonomous retention in the bone marrow. Our model thus demonstrates that mobilization in the presence of two spatially defined opposing chemotactic cues strictly depends on inhibitors shaping the time course of signal adaptation. Furthermore, our findings might help to find new modes of intervention to treat conditions characterized by excessively low or high circulating neutrophils.


Subject(s)
Bone Marrow/enzymology , Neutrophils/enzymology , Signal Transduction/physiology , rac GTP-Binding Proteins/metabolism , Animals , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Mice , Mice, Knockout , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , rac GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...