Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Decis Making ; 41(8): 970-977, 2021 11.
Article in English | MEDLINE | ID: mdl-34120510

ABSTRACT

Even as vaccination for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expands in the United States, cases will linger among unvaccinated individuals for at least the next year, allowing the spread of the coronavirus to continue in communities across the country. Detecting these infections, particularly asymptomatic ones, is critical to stemming further transmission of the virus in the months ahead. This will require active surveillance efforts in which these undetected cases are proactively sought out rather than waiting for individuals to present to testing sites for diagnosis. However, finding these pockets of asymptomatic cases (i.e., hotspots) is akin to searching for needles in a haystack as choosing where and when to test within communities is hampered by a lack of epidemiological information to guide decision makers' allocation of these resources. Making sequential decisions with partial information is a classic problem in decision science, the explore v. exploit dilemma. Using methods-bandit algorithms-similar to those used to search for other kinds of lost or hidden objects, from downed aircraft or underground oil deposits, we can address the explore v. exploit tradeoff facing active surveillance efforts and optimize the deployment of mobile testing resources to maximize the yield of new SARS-CoV-2 diagnoses. These bandit algorithms can be implemented easily as a guide to active case finding for SARS-CoV-2. A simple Thompson sampling algorithm and an extension of it to integrate spatial correlation in the data are now embedded in a fully functional prototype of a web app to allow policymakers to use either of these algorithms to target SARS-CoV-2 testing. In this instance, potential testing locations were identified by using mobility data from UberMedia to target high-frequency venues in Columbus, Ohio, as part of a planned feasibility study of the algorithms in the field. However, it is easily adaptable to other jurisdictions, requiring only a set of candidate test locations with point-to-point distances between all locations, whether or not mobility data are integrated into decision making in choosing places to test.


Subject(s)
COVID-19 , SARS-CoV-2 , Algorithms , COVID-19 Testing , Humans
2.
PLoS Med ; 16(11): e1002956, 2019 11.
Article in English | MEDLINE | ID: mdl-31714940

ABSTRACT

BACKGROUND: Opioid misuse and deaths are increasing in the United States. In 2017, Ohio had the second highest overdose rates in the US, with the city of Cincinnati experiencing a 50% rise in opioid overdoses since 2015. Understanding the temporal and geographic variation in overdose emergencies may help guide public policy responses to the opioid epidemic. METHODS AND FINDINGS: We used a publicly available data set of suspected heroin-related emergency calls (n = 6,246) to map overdose incidents to 280 census block groups in Cincinnati between August 1, 2015, and January 30, 2019. We used a Bayesian space-time Poisson regression model to examine the relationship between demographic and environmental characteristics and the number of calls within block groups. Higher numbers of heroin-related incidents were found to be associated with features of the built environment, including the proportion of parks (relative risk [RR] = 2.233; 95% credible interval [CI]: [1.075-4.643]), commercial (RR = 13.200; 95% CI: [4.584-38.169]), manufacturing (RR = 4.775; 95% CI: [1.958-11.683]), and downtown development zones (RR = 11.362; 95% CI: [3.796-34.015]). The number of suspected heroin-related emergency calls was also positively associated with the proportion of male population, the population aged 35-49 years, and distance to pharmacies and was negatively associated with the proportion aged 18-24 years, the proportion of the population with a bachelor's degree or higher, median household income, the number of fast food restaurants, distance to hospitals, and distance to opioid treatment programs. Significant spatial and temporal heterogeneity in the risks of incidents remained after adjusting for covariates. Limitations of this study include lack of information about the nature of incidents after dispatch, which may differ from the initial classification of being related to heroin, and lack of information on local policy changes and interventions. CONCLUSIONS: We identified areas with high numbers of reported heroin-related incidents and features of the built environment and demographic characteristics that are associated with these events in the city of Cincinnati. Publicly available information about opiate overdoses, combined with data on spatiotemporal risk factors, may help municipalities plan, implement, and target harm-reduction measures. In the US, more work is necessary to improve data availability in other cities and states and the compatibility of data from different sources in order to adequately measure and monitor the risk of overdose and inform health policies.


Subject(s)
Drug Overdose/epidemiology , Heroin Dependence/epidemiology , Bayes Theorem , Databases, Factual , Emergency Medical Services/trends , Emergency Service, Hospital/trends , Female , Heroin/adverse effects , Humans , Male , Ohio/epidemiology , Risk Factors , Spatio-Temporal Analysis , Substance-Related Disorders/epidemiology , United States
3.
BMC Med ; 16(1): 155, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30173667

ABSTRACT

BACKGROUND: We have previously conducted computer-based tournaments to compare the yield of alternative approaches to deploying mobile HIV testing services in settings where the prevalence of undetected infection may be characterized by 'hotspots'. We report here on three refinements to our prior assessments and their implications for decision-making. Specifically, (1) enlarging the number of geographic zones; (2) including spatial correlation in the prevalence of undetected infection; and (3) evaluating a prospective search algorithm that accounts for such correlation. METHODS: Building on our prior work, we used a simulation model to create a hypothetical city consisting of up to 100 contiguous geographic zones. Each zone was randomly assigned a prevalence of undetected HIV infection. We employed a user-defined weighting scheme to correlate infection levels between adjacent zones. Over 180 days, search algorithms selected a zone in which to conduct a fixed number of HIV tests. Algorithms were permitted to observe the results of their own prior testing activities and to use that information in choosing where to test in subsequent rounds. The algorithms were (1) Thompson sampling (TS), an adaptive Bayesian search strategy; (2) Besag York Mollié (BYM), a Bayesian hierarchical model; and (3) Clairvoyance, a benchmarking strategy with access to perfect information. RESULTS: Over 250 tournament runs, BYM detected 65.3% (compared to 55.1% for TS) of the cases identified by Clairvoyance. BYM outperformed TS in all sensitivity analyses, except when there was a small number of zones (i.e., 16 zones in a 4 × 4 grid), wherein there was no significant difference in the yield of the two strategies. Though settings of no, low, medium, and high spatial correlation in the data were examined, differences in these levels did not have a significant effect on the relative performance of BYM versus TS. CONCLUSIONS: BYM narrowly outperformed TS in our simulation, suggesting that small improvements in yield can be achieved by accounting for spatial correlation. However, the comparative simplicity with which TS can be implemented makes a field evaluation critical to understanding the practical value of either of these algorithms as an alternative to existing approaches for deploying HIV testing resources.


Subject(s)
Bayes Theorem , HIV Infections/diagnosis , Serologic Tests/methods , Telemedicine/methods , Algorithms , Humans , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...