Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 34(1): 579-596, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34735009

ABSTRACT

The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.


Subject(s)
Biological Evolution , Germ Cells, Plant/physiology , Magnoliopsida/physiology , Self-Incompatibility in Flowering Plants , Self-Incompatibility in Flowering Plants/genetics
2.
Nat Plants ; 5(2): 174-183, 2019 02.
Article in English | MEDLINE | ID: mdl-30692677

ABSTRACT

Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.


Subject(s)
Antirrhinum/genetics , Genome, Plant , Plant Proteins/genetics , Biological Evolution , Flowers/anatomy & histology , Flowers/genetics , Flowers/physiology , Gene Duplication , Molecular Sequence Annotation , Phylogeny , Self-Incompatibility in Flowering Plants/genetics
3.
Proc Natl Acad Sci U S A ; 115(43): 11006-11011, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30297406

ABSTRACT

Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightly-linked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation.


Subject(s)
Flowers/genetics , Gene Flow/genetics , Genomic Islands/genetics , Selection, Genetic/genetics , Antirrhinum/genetics , Chromosomes, Plant/genetics , Color , Genetic Speciation , Genome, Plant/genetics
4.
Science ; 358(6365): 925-928, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29146812

ABSTRACT

Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution. The sRNAs repress a pigment biosynthesis gene, creating a yellow highlight at the site of pollinator entry. The inverted duplication exhibits steep clines in allele frequency in a natural hybrid zone, showing that the allele is under selection. Thus, regulatory interactions of evolutionarily recent sRNAs can be acted upon by selection and contribute to the evolution of phenotypic diversity.


Subject(s)
Antirrhinum/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Pigmentation/genetics , Pigments, Biological/genetics , RNA, Small Untranslated/genetics , Antirrhinum/anatomy & histology , Color , Evolution, Molecular , Flowers/anatomy & histology , Gene Duplication , Gene Frequency , Pollination , Selection, Genetic
5.
New Phytol ; 196(4): 1251-1259, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23025531

ABSTRACT

Heteroblasty refers to the changes in leaf shape and size (allometry) along stems. Although evolutionary changes involving heteroblasty might contribute to leaf diversity, little is known of the extent to which heteroblasty differs between species or how it might relate to other aspects of allometry or other developmental transitions. Here, we develop a computational model that can quantify differences in leaf allometry between Antirrhinum (snapdragon) species, including variation in heteroblasty. It allows the underlying genes to be mapped in inter-species hybrids, and their effects to be studied in similar genetic backgrounds. Heteroblasty correlates with overall variation in leaf allometry, so species with smaller, rounder leaves produce their largest leaves earlier in development. This involves genes that affect both characters together and is exaggerated by additional genes with multiplicative effects on leaf size. A further heteroblasty gene also alters leaf spacing, but none affect other developmental transitions, including flowering. We suggest that differences in heteroblasty have co-evolved with overall leaf shape and size in Antirrhinum because these characters are constrained by common underlying genes. By contrast, heteroblasty is not correlated with other developmental transitions, with the exception of internode length, suggesting independent genetic control and evolution.


Subject(s)
Antirrhinum/genetics , Models, Biological , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Biological Evolution , Chimera , Gene Expression Regulation, Plant , Genetic Variation , Models, Genetic , Phenotype , Plant Leaves/growth & development , Quantitative Trait Loci
6.
PLoS Biol ; 8(11): e1000538, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21085695

ABSTRACT

The development of organs with particular shapes, like wings or flowers, depends on regional activity of transcription factors and signalling molecules. However, the mechanisms that link these molecular activities to the morphogenetic events underlying shape are poorly understood. Here we describe a combination of experimental and computational approaches that address this problem, applying them to a group of genes controlling flower shape in the Snapdragon (Antirrhinum). Four transcription factors are known to play a key role in the control of floral shape and asymmetry in Snapdragon. We use quantitative shape analysis of mutants for these factors to define principal components underlying flower shape variation. We show that each transcription factor has a specific effect on the shape and size of regions within the flower, shifting the position of the flower in shape space. These shifts are further analysed by generating double mutants and lines that express some of the genes ectopically. By integrating these observations with known gene expression patterns and interactions, we arrive at a combinatorial scheme for how regional effects on shape are genetically controlled. We evaluate our scheme by incorporating the proposed interactions into a generative model, where the developing flower is treated as a material sheet that grows according to how genes modify local polarities and growth rates. The petal shapes generated by the model show a good quantitative match with those observed experimentally for each petal in numerous genotypes, thus validating the hypothesised scheme. This article therefore shows how complex shapes can be accounted for by combinatorial effects of transcription factors on regional growth properties. This finding has implications not only for how shapes develop but also for how they may have evolved through tinkering with transcription factors and their targets.


Subject(s)
Antirrhinum/embryology , Body Patterning/genetics , Genes, Plant , Antirrhinum/genetics , Antirrhinum/growth & development , Base Sequence , DNA Primers , Flowers , Mutation , Polymerase Chain Reaction
7.
PLoS Biol ; 8(7): e1000429, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20652019

ABSTRACT

Crosses between closely related species give two contrasting results. One result is that species hybrids may be inferior to their parents, for example, being less fertile [1]. The other is that F1 hybrids may display superior performance (heterosis), for example with increased vigour [2]. Although various hypotheses have been proposed to account for these two aspects of hybridisation, their biological basis is still poorly understood [3]. To gain further insights into this issue, we analysed the role that variation in gene expression may play. We took a conserved trait, flower asymmetry in Antirrhinum, and determined the extent to which the underlying regulatory genes varied in expression among closely related species. We show that expression of both genes analysed, CYC and RAD, varies significantly between species because of cis-acting differences. By making a quantitative genotype-phenotype map, using a range of mutant alleles, we demonstrate that the species lie on a plateau in gene expression-morphology space, so that the variation has no detectable phenotypic effect. However, phenotypic differences can be revealed by shifting genotypes off the plateau through genetic crosses. Our results can be readily explained if genomes are free to evolve within an effectively neutral zone in gene expression space. The consequences of this drift will be negligible for individual loci, but when multiple loci across the genome are considered, we show that the variation may have significant effects on phenotype and fitness, causing a significant drift load. By considering these consequences for various gene-expression-fitness landscapes, we conclude that F1 hybrids might be expected to show increased performance with regard to conserved traits, such as basic physiology, but reduced performance with regard to others. Thus, our study provides a new way of explaining how various aspects of hybrid performance may arise through natural variation in gene activity.


Subject(s)
Antirrhinum/genetics , Genetic Variation , Hybridization, Genetic , Alleles , Flowers/anatomy & histology , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genotype , Inbreeding , Phenotype , Principal Component Analysis , Species Specificity
8.
Proc Natl Acad Sci U S A ; 102(29): 10221-6, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16009935

ABSTRACT

Understanding evolutionary change requires phenotypic differences between organisms to be placed in a genetic context. However, there are few cases where it has been possible to define an appropriate genotypic space for a range of species. Here we address this problem by defining a genetically controlled space that captures variation in shape and size between closely related species of Antirrhinum. The axes of the space are based on an allometric model of leaves from an F2 of an interspecific cross between Antirrhinum majus and Antirrhinum charidemi. Three principal components were found to capture most of the genetic variation in shape and size, allowing a three-dimensional allometric space to be defined. The contribution of individual genetic loci was determined from QTL analysis, allowing each locus to be represented as a vector in the allometric space. Leaf shapes and sizes of 18 different Antirrhinum taxa, encompassing a broad range of leaf morphologies, could be accurately represented as clouds within the space. Most taxa overlapped with, or were near to, at least one other species in the space, so that together they defined a largely interconnected domain of viable forms. It is likely that the pattern of evolution within this domain reflects a combination of directional selection and evolutionary tradeoffs within a high dimensional space.


Subject(s)
Antirrhinum/anatomy & histology , Antirrhinum/genetics , Biological Evolution , Hybridization, Genetic , Models, Biological , Phenotype , Plant Leaves/anatomy & histology , Biometry , Chromosome Mapping , Genotype , Lod Score , Principal Component Analysis , Quantitative Trait Loci , Species Specificity
9.
Proc Natl Acad Sci U S A ; 102(14): 5068-73, 2005 Apr 05.
Article in English | MEDLINE | ID: mdl-15790677

ABSTRACT

To understand how genes control floral asymmetry, we have isolated and analyzed the role of the RADIALIS (RAD) gene in Antirrhinum. We show that the RAD gene encodes a small MYB-like protein that is specifically expressed in the dorsal region of developing flowers. RAD has a single MYB-like domain that is closely related to one of the two MYB-like domains of DIV, a protein that has an antagonistic effect to RAD on floral development. Interactions between RAD and other genes indicate that floral asymmetry depends on the interplay between two pairs of transcription factors. First, a pair of TCP proteins is expressed in dorsal regions of the floral meristem, leading to the activation of RAD in the dorsal domain. The RAD MYB-like protein then antagonizes the related DIV MYB-like protein, preventing DIV activity in dorsal regions. In addition to its role in dorsal regions, RAD acts nonautonomously on lateral regions either directly, through RAD protein movement, or indirectly, through a signaling molecule.


Subject(s)
Antirrhinum/growth & development , Antirrhinum/genetics , Flowers/growth & development , Flowers/genetics , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Transcription Factors/genetics , Amino Acid Sequence , Antirrhinum/metabolism , Base Sequence , Biological Evolution , Body Patterning/genetics , Cloning, Molecular , DNA, Plant/genetics , Flowers/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , In Situ Hybridization , Models, Biological , Molecular Sequence Data , Mutation , Plant Proteins/metabolism , Proto-Oncogene Proteins c-myb/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Sequence Homology, Amino Acid , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...