Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Environ Res ; 252(Pt 2): 118918, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38614198

ABSTRACT

In this study, the removal of two emerging pollutants (EPs), antipyrine and acetanilide, through adsorption on activated carbons (ACs) prepared by chemical activation of Organosolv lignin with H3PO4 were evaluated. ACs with different pore size distribution were obtained at different impregnation ratios (H3PO4/lignin, 0.5-3.0 w/w) and activating temperatures (500-900 °C). The porosity and surface chemistry of the ACs were determined, and a bimodal size distribution of micropores and narrow mesopores was observed for the different ACs. These ACs were tested for antipyrine and acetanilide adsorption in aqueous solutions in a batch system at 20 °C and low concentration levels (0.5-10 ppm). In general, the ACs exhibited higher adsorption affinity to acetanilide than to antipyrine due to its smaller molecular size. Langmuir adsorption isotherm was able to describe the adsorption equilibrium data. A new Linear Driving Force (2-LDF) kinetic model, based on the bimodal size distribution of micropores and narrow mesopores observed for the ACs has been developed. The new model provided a more accurate description of the batch adsorption rates than that obtained from conventional kinetic models, and also enabled to relate the pore size distribution of the adsorbent with the adsorption kinetics. The validity of this model was checked in small-scale column fixed bed adsorption for the AC showing the highest affinity for both EP. The kinetic model and equilibrium adsorption isotherm obtained from the batch experiments were successfully used to provide an accurate description of the bed service time and the full breakthrough profile of acetanilide and antipyrine.


Subject(s)
Acetanilides , Antipyrine , Lignin , Adsorption , Lignin/chemistry , Antipyrine/chemistry , Acetanilides/chemistry , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis
2.
Nanomaterials (Basel) ; 13(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37999275

ABSTRACT

The aim of this work is to establish the Oxygen Reduction Reaction (ORR) activity of self-standing electrospun carbon fiber catalysts obtained from different metallic salt/lignin solutions. Through a single-step electrospinning technique, freestanding carbon fiber (CF) electrodes embedded with various metal nanoparticles (Co, Fe, Pt, and Pd), with 8-16 wt% loadings, were prepared using organosolv lignin as the initial material. These fibers were formed from a solution of lignin and ethanol, into which the metallic salt precursors were introduced, without additives or the use of toxic reagents. The resulting non-woven cloths were thermostabilized in air and then carbonized at 900 °C. The presence of metals led to varying degrees of porosity development during carbonization, improving the accessibility of the electrolyte to active sites. The obtained Pt and Pd metal-loaded carbon fibers showed high nanoparticle dispersion. The performance of the electrocatalyst for the oxygen reduction reaction was assessed in alkaline and acidic electrolytes and compared to establish which metals were the most suitable for producing carbon fibers with the highest electrocatalytic activity. In accordance with their superior dispersion and balanced pore size distribution, the carbon fibers loaded with 8 wt% palladium showed the best ORR activity, with onset potentials of 0.97 and 0.95 V in alkaline and acid media, respectively. In addition, this electrocatalyst exhibits good stability and selectivity for the four-electron energy pathway while using lower metal loadings compared to commercial catalysts.

3.
Polymers (Basel) ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896307

ABSTRACT

In this study, electrospun carbon fiber electrodes were prepared by the carbonization of PAN-Fe3O4 electrospun fibers at 800 °C for their use as catalysts in the oxygen reduction reaction in an alkaline electrolyte. Magnetic nanofiber mats were fabricated using a needle-free electrospinning method by incorporating magnetic nanoparticles into a polymer solution. Electrochemical tests revealed that the oxygen reduction reaction (ORR) activity is optimized at an intermediate magnetite loading of 30% wt. These catalysts not only show better performance compared to their counterparts but also achieve high selectivity to water at low potentials. The onset and half-wave potentials of 0.92 and 0.76 V shown by these samples are only slightly behind those of the commercial Pt 20%-carbon black ORR catalyst. The obtained results point out that the electrospinning of PAN-Fe3O4 solutions allows the preparation of advanced N-Fe ORR catalysts in fibrillar morphology.

4.
Chemosphere ; 341: 140047, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660800

ABSTRACT

A common strategy for removing highly toxic organic compounds, such as chlorinated organic compounds, is their adsorption on granular activated carbon. Spent granular activated carbon results in a toxic residue to manage; therefore, the regeneration and reuse of granular activated carbon on the site would be advisable. This work studies the regeneration of a granular activated carbon saturated in 1,2,4-trichlorobenzene, chosen as the model chlorinated organic compounds, by heterogeneous Fenton, where iron was previously immobilised on the granular activated carbon surface. This methodology avoids the addition of iron to the aqueous phase at concentrations above the allowable limits and the need for acidification. Three successive cycles of adsorption-regeneration were carried out batchwise (5 gGAC·L-1) with a granular activated carbon saturated with 300 mg124-TCB·gGAC-1. The recovery of the adsorption capacity after regeneration was studied with H2O2 (166 mM, 1.5 the stoichiometric dosage), at different concentrations adsorbed with iron adsorbed concentrations (0-12 mgFe·gGAC-1) and temperatures (20-80 °C). Stable recovery of the adsorption capacity values of 65% were obtained at 180 min with 12 mgFe·gGAC-1 and 60 °C. The porosity and surface chemistry of the adsorbent remained very similar after different adsorption-regeneration cycles without iron leaching into the aqueous phase. The oxidant consumption was close to the stoichiometric value for the mineralization of 1,2,4-trichlorobenzene, with a low unproductive consumption of H2O2 with granular activated carbon. In addition, no aromatic or chlorinated by-products were detected in the aqueous solution obtained in the regeneration process. The negligible toxicity of the aqueous phase with the Microtox bioassay confirmed the absence of toxic oxidation by-products.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Charcoal , Temperature , Iron/chemistry , Adsorption , Water Pollutants, Chemical/chemistry
5.
Ind Eng Chem Res ; 61(27): 9611-9620, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35855725

ABSTRACT

Chlorinated organic compounds (COCs) are persistent organic pollutants often found in groundwater near industrial sites or in industrial wastewaters. Adsorption into activated carbon is a common strategy to remediate these waters, but spent activated carbon results in a toxic residue to manage. To avoid the transport of the chlorinated compounds out of the site, the in-situ regeneration of the spent activated carbon can be considered for reuse to implement a circular economy. In this work, the regeneration of a commercial granular activated carbon (GAC) has been carried out using thermally activated sodium persulfate (TAP). GAC was previously saturated in 1,2,4-trichlorobenzene (124-TCB) as the model compound. The initial adsorption value was 350 mg124-TCB·gGAC -1. First, the nonproductive consumption of sodium persulfate was studied at different temperatures using nonsaturated GAC. Then, the regeneration of the saturated GAC (5 g) was studied by an aqueous solution (166 mM) of TAP (1 L) at a temperature range from 20 to 80 °C. The possible recovery of the adsorption capacity was studied after 3 h of treatment in three successive adsorption-regeneration cycles at the selected temperature (60 °C). The physicochemical changes of the GAC were also investigated before and after the regeneration treatments. The results evidence the significant deposition of sulfate on the GAC after each treatment of regeneration, which avoids the recovery of the initial adsorption capacity. Therefore, each regeneration cycle was necessarily followed by a washing step at 60 °C to remove this sulfate. After that, the regeneration treatment achieved a stable and high recovery of the initial adsorption capacity of about 48.2%.

6.
Materials (Basel) ; 15(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35057313

ABSTRACT

A Zr-loaded P-containing biomass-derived activated carbon (ACPZr) has been tested for methanol dehydration between 450 and 550 °C. At earlier stages, methanol conversion was complete, and the reaction product was mainly dimethyl ether (DME), although coke, methane, hydrogen and CO were also observed to a lesser extent. The catalyst was slowly deactivated with time-on-stream (TOS), but maintained a high selectivity to DME (>80%), with a higher yield to this product than 20% for more than 24 h at 500 °C. A kinetic model was developed for methanol dehydration reaction, which included the effect of the inhibition of water and the deactivation of the catalyst by coke. The study of stoichiometric rates pointed out that coke could be produced through a formaldehyde intermediate, which might, alternatively, decompose into CO and H2. On the other hand, the presence of 10% water in the feed did not affect the rate of coke formation, but produced a reduction of 50% in the DME yield, suggesting a reversible competitive adsorption of water. A Langmuir-Hinshelwood reaction mechanism was used to develop a kinetic model that considered the deactivation of the catalyst. Activation energy values of 65 and 51 kJ/mol were obtained for DME and methane production in the temperature range from 450 °C to 550 °C. On the other hand, coke formation as a function of time on stream (TOS) was also modelled and used as the input for the deactivation function of the model, which allowed for the successful prediction of the DME, CH4 and CO yields in the whole evaluated TOS interval.

7.
Anal Chem ; 92(7): 5100-5106, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32153187

ABSTRACT

Raman and transmission FTIR spectroscopic techniques have been coupled in a new homemade reactor-cell designed in a joint CSIC-LCS collaboration. The setup is easily adapted to any FTIR and fiber-coupled Raman spectrometers and gas analysis techniques. It allows for simultaneous operando FTIR and Raman spectroscopic measurement, which provide complementary characterization of adsorbed species, reaction intermediates, and structural properties of the catalyst. This system was validated with the study of vanadium-based catalysts during propane oxydehydrogenation (ODH). The combined use of both spectroscopies with gas analysis techniques to measure the activity contributes to the understanding of propane ODH and the identification of the role of different oxygen species bound to vanadium sites. For example, the simultaneous characterization of the catalyst under the same conditions by IR and Raman confirms that the V═O mode has the same frequency in both spectroscopies and that bridging oxygen sites (V-O-V, V-O-Zr) present higher activity than terminal V═O bonds. These results demonstrate the high potential of the new simultaneous transmission IR-Raman operando rig to correlate the activity and the structure of catalysts, thus assisting the rational design of catalytic processes.

8.
Materials (Basel) ; 12(13)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31323914

ABSTRACT

Activated carbons have been prepared by the chemical activation of olive stones with phosphoric acid and loaded with Zr. The addition of Zr to the phosphorus-containing activated carbons resulted in the formation of zirconium phosphate surface groups. Gas phase methanol dehydration has been studied while using the prepared Zr-loaded P-containing activated carbons as catalysts. Carbon catalysts showed high steady-state methanol conversion values, which increased with Zr loading up to a limit that was related to P content. The selectivity towards dimethyl ether was higher than 95% for all Zr loadings. Zirconium phosphate species that were present on catalysts surface were responsible for the catalytic activity.

9.
Materials (Basel) ; 12(15)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357532

ABSTRACT

Activated carbon monoliths (ACMs), with 25 cells/cm2, were prepared from the direct extrusion of Alcell, Kraft lignin and olives stones particles that were impregnated with phosphoric acid, followed by activation at 700 °C. These ACMs were used as catalysts for methanol dehydration reaction under air atmosphere. ACM that was prepared from olive stone and at impregnation ratio of 2, OS2, showed the highest catalytic activity, with a methanol conversion of 75%, a selectivity to dimethyl ether (DME) higher than 90%, and a great stability under the operating conditions studied. The results suggest that the monolithic conformation, with a density channel of 25 cells/cm2 avoid the blockage of active sites by coke deposition to a large extent. Methanol conversion for OS2 was reduced to 29% in the presence of 8%v water, at 350 °C, although the selectivity to DME remained higher than 86%. A kinetic model of methanol dehydration in the presence of air was developed, while taking into account the competitive adsorption of water. A Langmuir-Hinshelwood mechanism, whose rate-limiting step was the surface reaction between two adsorbed methanol molecules, represented the experimental data under the conditions studied very well. An activation energy value of 92 kJ/mol for methanol dehydration reaction and adsorption enthalpies for methanol and water of -12 and -35 kJ/mol, respectively, were obtained.

10.
Polymers (Basel) ; 10(7)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-30960660

ABSTRACT

Polyacrylonitrile (PAN) is one of the materials most often used for carbonization. PAN nanofiber mats, created by electrospinning, are an especially interesting source to gain carbon nanofibers. A well-known problem in this process is fixing the PAN nanofiber mats during the stabilization process which is necessary to avoid contraction of the fibers, correlated with an undesired increase in the diameter and undesired bending. Fixing this issue typically results in breaks in the nanofiber mats if the tension is too high, or it is not strong enough to keep the fibers as straight as in the original state. This article suggests a novel method to overcome this problem by electrospinning on an aluminum substrate on which the nanofiber mat adheres rigidly, stabilizing the composite and carbonizing afterwards either with or without the aluminum substrate to gain either a pure carbon nanofiber mat or a metal/carbon composite.

11.
ACS Omega ; 2(11): 7739-7745, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-31457330

ABSTRACT

Tailoring the morphological, chemical, and physical properties of vanadium oxides (VOx) is crucial to optimize their performance in current and future applications. The present contribution proposes a new route to obtain VOx nanofibers with different V4+/V5+ ratios and crystallinity. The method involves the exclusive electrospinning of water-free NH4VO3-saturated solutions including a reductant. Subsequent air-annealing under suitable conditions yields vanadium oxide fibers of 20-90 nm diameter and 10-50 m2/g surface area. The presence of the reductant gives rise to VOx nanofibers with a considerable proportion of V4+. Then, the right choice of the calcination heating rate and temperature permits to modify the V4+/V5+ ratio as well as the crystalline phase and crystallite size of the fibers. With the proposed methodology, long-range continuous single-phase orthorhombic V2O5 and monoclinic V3O7 nanofibers are obtained.

12.
J Colloid Interface Sci ; 332(1): 39-45, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19150083

ABSTRACT

The adsorption of sodium dodecylbenzene sulfonate (SDBS) from its aqueous solution at different temperatures has been studied using three activated carbons prepared in our laboratory. Lignin was used as raw material for the preparation of activated carbons (ACs). The results of the adsorption equilibrium were analyzed and fitted to the Langmuir model. Thermodynamic magnitudes were estimated as well, and their values indicated that the adsorption processes were spontaneous and exothermic. The kinetic study showed that the processes are of second apparent order related to the concentration of the vacant active centers on the surface of the activated carbons. The values of the effective internal diffusion coefficients have been calculated applying the equations developed by Crank and Vermeulen.

13.
J Colloid Interface Sci ; 279(2): 357-63, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15464799

ABSTRACT

Eucalyptus grandis sawdust, a major waste from the growing Uruguayan wood industry, was used in previous work to prepare powdered activated carbon (PAC). In the present work, granular activated carbon (GAC) was prepared by mixing PAC, carboxymethyl cellulose as a binder, and kaolin as reinforcer. Ultimate analysis and surface characterization of GAC and PAC were performed. Phenol adsorption was used as a way to compare the characteristics of different PAC and GAC preparations. Kinetics and isotherms of the different GAC and PAC were performed in a shaking bath at 100 rpm and 298 K. Phenol concentrations were determined by UV spectroscopy. Some kinetics parameters were calculated; from kinetics results, external resistance to mass transfer from the bulk liquid can be neglected as the controlling step. Isotherms were fitted to Langmuir and Freundlich models, and corresponding parameters were determined. Maximum phenol uptakes for all carbons were determined and correlated with carbon characteristics. Thermogravimertic analysis (TGA) determinations were performed in order to study adsorption characteristics and conditions for GAC regeneration after its use. The results showed that phenol is preferentially physisorbed on the carbon of the granules, though some chemisorption was detected. No adsorption was detected in the kaolin-carboxymethyl cellulose mixture.


Subject(s)
Carbon/chemistry , Phenol/chemistry , Wood , Adsorption , Eucalyptus/chemistry , Particle Size , Surface Properties , Temperature , Time Factors
14.
Arch. domin. pediatr ; 23(1): 17-9, ene.-abr. 1987. ilus
Article in Spanish | LILACS | ID: lil-62030

ABSTRACT

Presentamos el caso de un recién nacido con Toxoplasmosis Congénita la cual se presentó con pseudoquistes del pulmón. Se discuten los aspectos clínicos y de laboratorio de la enfermedad y se enfatiza sobre su importancia como causa de aborto y de mortalidad neonatal


Subject(s)
Infant, Newborn , Humans , Male , Toxoplasmosis, Congenital , Toxoplasmosis, Congenital/diagnosis , Toxoplasmosis, Congenital/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...