Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731978

ABSTRACT

Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aß induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aß treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.


Subject(s)
Alzheimer Disease , Neurons , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Neurons/metabolism , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Humans , Mice , Phosphorylation , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Rats
2.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361598

ABSTRACT

Microdialysis assays demonstrated a possible role of orexin in the regulation of amyloid beta peptide (Aß) levels in the hippocampal interstitial fluid in the APP transgenic model. CB2R is overexpressed in activated microglia, showing a neuroprotective effect. These two receptors may interact, forming CB2-OX1-Hets and becoming a new target to combat Alzheimer's disease. Aims: Demonstrate the potential role of CB2-OX1-Hets expression and function in microglia from animal models of Alzheimer's disease. Receptor heteromer expression was detected by immunocytochemistry, bioluminescence resonance energy transfer (BRET) and proximity ligation assay (PLA) in transfected HEK-293T cells and microglia primary cultures. Quantitation of signal transduction events in a heterologous system and in microglia cells was performed using the AlphaScreen® SureFire® kit, western blot, the GCaMP6 calcium sensor and the Lance Ultra cAMP kit (PerkinElmer). The formation of CB2-OX1 receptor complexes in transfected HEK-293T cells has been demonstrated. The tetrameric complex is constituted by one CB2R homodimer, one OX1R homodimer and two G proteins, a Gi and a Gq. The use of TAT interfering peptides showed that the CB2-OX1 receptor complex interface is TM4-TM5. At the functional level it has been observed that the OX1R antagonist, SB334867, potentiates the action induced by CB2R agonist JWH133. This effect is observed in transfected HEK-293T cells and microglia, and it is stronger in the Alzheimer's disease (AD) animal model APPSw/Ind where the expression of the complex assessed by the proximity ligation assay indicates an increase in the number of complexes compared to resting microglia. The CB2-OX1 receptor complex is overexpressed in microglia from AD animal models where OX1R antagonists potentiate the neuroprotective actions of CB2R activation. Taken together, these results point to OX1R antagonists as drugs with therapeutic potential to combat AD. Data access statement: Raw data will be provided by the corresponding author upon reasonable requirement.


Subject(s)
Alzheimer Disease , Microglia , Animals , Mice , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Mice, Transgenic , Disease Models, Animal , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism
3.
Sci Rep ; 12(1): 16760, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202961

ABSTRACT

Honey bees are of great economic and ecological importance, but are facing multiple stressors that can jeopardize their pollination efficiency and survival. Therefore, understanding the physiological bases of their stress response may help defining treatments to improve their resilience. We took an original approach to design molecules with this objective. We took advantage of the previous identified neuropeptide allatostatin A (ASTA) and its receptor (ASTA-R) as likely mediators of the honey bee response to a biologically relevant stressor, exposure to an alarm pheromone compound. A first series of ASTA-R ligands were identified through in silico screening using a homology 3D model of the receptor and in vitro binding experiments. One of these (A8) proved also efficient in vivo, as it could counteract two behavioral effects of pheromone exposure, albeit only in the millimolar range. This putative antagonist was used as a template for the chemical synthesis of a second generation of potential ligands. Among these, two compounds showed improved efficiency in vivo (in the micromolar range) as compared to A8 despite no major improvement in their affinity for the receptor in vitro. These new ligands are thus promising candidates for alleviating stress in honey bees.


Subject(s)
Neuropeptides , Pollination , Animals , Bees , Neuropeptides/metabolism , Pheromones/chemistry
6.
J Med Chem ; 64(13): 9354-9364, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34161090

ABSTRACT

Cannabidiol (CBD), the second most abundant of the active compounds found in the Cannabis sativa plant, is of increasing interest because it is approved for human use and is neither euphorizing nor addictive. Here, we design and synthesize novel compounds taking into account that CBD is both a partial agonist, when it binds to the orthosteric site, and a negative allosteric modulator, when it binds to the allosteric site of the cannabinoid CB2 receptor. Molecular dynamic simulations and site-directed mutagenesis studies have identified the allosteric site near the receptor entrance. This knowledge has permitted to perform structure-guided design of negative and positive allosteric modulators of the CB2 receptor with potential therapeutic utility.


Subject(s)
Biological Products/pharmacology , Cannabidiol/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Drug Design , Receptor, Cannabinoid, CB2/agonists , Allosteric Site/drug effects , Biological Products/chemical synthesis , Biological Products/chemistry , Cannabidiol/chemical synthesis , Cannabidiol/chemistry , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/chemistry , Cannabis/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
7.
NAR Genom Bioinform ; 3(1): lqab008, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33655207

ABSTRACT

The massive amount of data generated from genome sequencing brings tons of newly identified mutations, whose pathogenic/non-pathogenic effects need to be evaluated. This has given rise to several mutation predictor tools that, in general, do not consider the specificities of the various protein groups. We aimed to develop a predictor tool dedicated to membrane proteins, under the premise that their specific structural features and environment would give different responses to mutations compared to globular proteins. For this purpose, we created TMSNP, a database that currently contains information from 2624 pathogenic and 196 705 non-pathogenic reported mutations located in the transmembrane region of membrane proteins. By computing various conservation parameters on these mutations in combination with annotations, we trained a machine-learning model able to classify mutations as pathogenic or not. TMSNP (freely available at http://lmc.uab.es/tmsnp/) improves considerably the prediction power of commonly used mutation predictors trained with globular proteins.

8.
Addict Biol ; 26(5): e13017, 2021 09.
Article in English | MEDLINE | ID: mdl-33559278

ABSTRACT

Cocaine not only increases brain dopamine levels but also activates the sigma1 receptor (σ1 R) that in turn regulates orexigenic receptor function. Identification of interactions involving dopamine D1 (D1 R), ghrelin (GHS-R1a ), and σ1 receptors have been addressed by biophysical techniques and a complementation approach using interfering peptides. The effect of cocaine on receptor functionality was assayed by measuring second messenger, cAMP and Ca2+ , levels. The effect of acute or chronic cocaine administration on receptor complex expression was assayed by in situ proximity ligation assay. In silico procedures were used for molecular model building. σ1 R KO mice were used for confirming involvement of this receptor. Upon identification of protomer interaction and receptor functionality, a unique structural model for the macromolecular complex formed by σ1 R, D1 R, and GHS-R1a is proposed. The functionality of the complex, able to couple to both Gs and Gq proteins, is affected by cocaine binding to the σ1 R, as confirmed using samples from σ1 R-/- mice. The expression of the macromolecular complex was differentially affected upon acute and chronic cocaine administration to rats. The constructed 3D model is consistent with biochemical, biophysical, and available structural data. The σ1 R, D1 R, and GHS-R1a complex constitutes a functional unit that is altered upon cocaine binding to the σ1 R. Remarkably, the heteromer can simultaneously couple to two G proteins, thus allowing dopamine to signal via Ca2+ and ghrelin via cAMP. The anorexic action of cocaine is mediated by such complex whose expression is higher after acute than after chronic administration regimens.


Subject(s)
Cocaine/pharmacology , Hunger/drug effects , Animals , Brain/drug effects , Dopamine/metabolism , Dopamine Uptake Inhibitors/pharmacology , Male , Mice , Neurons/drug effects , Rats , Receptors, Dopamine D1/metabolism , Receptors, Ghrelin/metabolism , Receptors, sigma , Sigma-1 Receptor
9.
Cell Mol Life Sci ; 78(8): 3957-3968, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33580270

ABSTRACT

Adenosine is one of the most ancient signaling molecules and has receptors in both animals and plants. In mammals there are four specific receptors, A1, A2A, A2B, and A3, which belong to the superfamily of G-protein-coupled receptors (GPCRs). Evidence accumulated in the last 20 years indicates that GPCRs are often expressed as oligomeric complexes formed by a number of equal (homomers) or different (heteromers) receptors. This review presents the data showing the occurrence of heteromers formed by A1 and A2A, A2A and A2B, and A2A and A3 receptors highlighting (i) their tetrameric structural arrangements, and (ii) the functional diversity that those heteromers provide to adenosinergic signaling.


Subject(s)
Adenosine/metabolism , Receptors, Purinergic P1/metabolism , Animals , Humans , Models, Molecular , Protein Conformation , Protein Multimerization , Receptors, Purinergic P1/chemistry , Signal Transduction
10.
Comput Struct Biotechnol J ; 18: 2723-2732, 2020.
Article in English | MEDLINE | ID: mdl-33101610

ABSTRACT

Biased agonism, the ability of agonists to differentially activate downstream signaling pathways by stabilizing specific receptor conformations, is a key issue for G protein-coupled receptor (GPCR) signaling. The C-terminal domain might influence this functional selectivity of GPCRs as it engages G proteins, GPCR kinases, ß-arrestins, and several other proteins. Thus, the aim of this paper is to compare the agonist-dependent selectivity for intracellular pathways in a heterologous system expressing the full-length (A2AR) and a C-tail truncated (A2A Δ40R lacking the last 40 amino acids) adenosine A2A receptor, a GPCR that is already targeted in Parkinson's disease using a first-in-class drug. Experimental data such as ligand binding, cAMP production, ß-arrestin recruitment, ERK1/2 phosphorylation and dynamic mass redistribution assays, which correspond to different aspects of signal transduction, were measured upon the action of structurally diverse compounds (the agonists adenosine, NECA, CGS-21680, PSB-0777 and LUF-5834 and the SCH-58261 antagonist) in cells expressing A2AR and A2A Δ40R. The results show that taking cAMP levels and the endogenous adenosine agonist as references, the main difference in bias was obtained with PSB-0777 and LUF-5834. The C-terminus is dispensable for both G-protein and ß-arrestin recruitment and also for MAPK activation. Unrestrained molecular dynamics simulations, at the µs timescale, were used to understand the structural arrangements of the binding cavity, triggered by these chemically different agonists, facilitating G protein binding with different efficacy.

11.
Chemistry ; 26(68): 15839-15842, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32794211

ABSTRACT

Single chemical entities with potential to simultaneously interact with two binding sites are emerging strategies in medicinal chemistry. We have designed, synthesized and functionally characterized the first bitopic ligands for the CB2 receptor. These compounds selectively target CB2 versus CB1 receptors. Their binding mode was studied by molecular dynamic simulations and site-directed mutagenesis.


Subject(s)
Receptor, Cannabinoid, CB2 , Binding Sites , Ligands , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Receptor, Cannabinoid, CB2/chemistry , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism
12.
Nat Methods ; 17(8): 777-787, 2020 08.
Article in English | MEDLINE | ID: mdl-32661425

ABSTRACT

G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique for exploring the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyze and share GPCR MD data. GPCRmd originates from a community-driven effort to create an open, interactive and standardized database of GPCR MD simulations.


Subject(s)
Molecular Dynamics Simulation , Receptors, G-Protein-Coupled/chemistry , Software , Metabolome , Models, Molecular , Protein Conformation
14.
Nucleic Acids Res ; 48(W1): W54-W59, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32484557

ABSTRACT

Internal water molecules play an essential role in the structure and function of membrane proteins including G protein-coupled receptors (GPCRs). However, technical limitations severely influence the number and certainty of observed water molecules in 3D structures. This may compromise the accuracy of further structural studies such as docking calculations or molecular dynamics simulations. Here we present HomolWat, a web application for incorporating water molecules into GPCR structures by using template-based modelling of homologous water molecules obtained from high-resolution structures. While there are various tools available to predict the positions of internal waters using energy-based methods, the approach of borrowing lacking water molecules from homologous GPCR structures makes HomolWat unique. The tool can incorporate water molecules into a protein structure in about a minute with around 85% of water recovery. The web server is freely available at http://lmc.uab.es/homolwat.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Software , Water/chemistry , Internet , Models, Molecular , Protein Conformation , Receptor, Serotonin, 5-HT2A/chemistry
15.
Cell Metab ; 32(1): 56-70.e7, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32589947

ABSTRACT

The combination of aging populations with the obesity pandemic results in an alarming rise in non-communicable diseases. Here, we show that the enigmatic adenosine A2B receptor (A2B) is abundantly expressed in skeletal muscle (SKM) as well as brown adipose tissue (BAT) and might be targeted to counteract age-related muscle atrophy (sarcopenia) as well as obesity. Mice with SKM-specific deletion of A2B exhibited sarcopenia, diminished muscle strength, and reduced energy expenditure (EE), whereas pharmacological A2B activation counteracted these processes. Adipose tissue-specific ablation of A2B exacerbated age-related processes and reduced BAT EE, whereas A2B stimulation ameliorated obesity. In humans, A2B expression correlated with EE in SKM, BAT activity, and abundance of thermogenic adipocytes in white fat. Moreover, A2B agonist treatment increased EE from human adipocytes, myocytes, and muscle explants. Mechanistically, A2B forms heterodimers required for adenosine signaling. Overall, adenosine/A2B signaling links muscle and BAT and has both anti-aging and anti-obesity potential.


Subject(s)
Aging/metabolism , Obesity/metabolism , Receptor, Adenosine A2B/metabolism , Adolescent , Adult , Animals , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Receptor, Adenosine A2B/deficiency , Signal Transduction , Young Adult
16.
Schizophr Bull ; 46(6): 1547-1557, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32249318

ABSTRACT

Schizophrenia (SCZ) has been associated with serotonergic and endocannabinoid systems dysregulation, but difficulty in obtaining in vivo neurological tissue has limited its exploration. We investigated CB1R-5-HT2AR heteromer expression and functionality via intracellular pERK and cAMP quantification in olfactory neuroepithelium (ON) cells of SCZ patients non-cannabis users (SCZ/nc), and evaluated whether cannabis modulated these parameters in patients using cannabis (SCZ/c). Results were compared vs healthy controls non-cannabis users (HC/nc) and healthy controls cannabis users (HC/c). Further, antipsychotic effects on heteromer signaling were tested in vitro in HC/nc and HC/c. Results indicated that heteromer expression was enhanced in both SCZ groups vs HC/nc. Additionally, pooling all 4 groups together, heteromer expression correlated with worse attentional performance and more neurological soft signs (NSS), indicating that these changes may be useful markers for neurocognitive impairment. Remarkably, the previously reported signaling properties of CB1R-5-HT2AR heteromers in ON cells were absent, specifically in SCZ/nc treated with clozapine. These findings were mimicked in cells from HC/nc exposed to clozapine, suggesting a major role of this antipsychotic in altering the quaternary structure of the CB1R-5-HT2AR heteromer in SCZ/nc patients. In contrast, cells from SCZ/c showed enhanced heteromer functionality similar to HC/c. Our data highlight a molecular marker of the interaction between antipsychotic medication and cannabis use in SCZ with relevance for future studies evaluating its association with specific neuropsychiatric alterations.


Subject(s)
Antipsychotic Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Marijuana Use , Neuroepithelial Cells , Olfactory Receptor Neurons , Receptor, Cannabinoid, CB1 , Receptor, Serotonin, 5-HT2A , Schizophrenia/metabolism , Adult , Cannabinoid Receptor Agonists/blood , Cells, Cultured , Clozapine/pharmacology , Cross-Sectional Studies , Dronabinol/blood , Female , Humans , Male , Neuroepithelial Cells/drug effects , Neuroepithelial Cells/metabolism , Olfactory Receptor Neurons/drug effects , Olfactory Receptor Neurons/metabolism , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Young Adult
17.
Bioinformatics ; 36(10): 3271-3272, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32096817

ABSTRACT

MOTIVATION: G protein-coupled receptors (GPCRs) can form homo-, heterodimers and larger order oligomers that exert different functions than monomers. The pharmacological potential of such complexes is hampered by the limited information available on the type of complex formed and its quaternary structure. Several GPCR structures in the Protein Data Bank display crystallographic interfaces potentially compatible with physiological interactions. RESULTS: Here, we present DIMERBOW, a database and web application aimed to visually browse the complete repertoire of potential GPCR dimers present in solved structures. The tool is suited to help finding the best possible structural template to model GPCR homomers. AVAILABILITY AND IMPLEMENTATION: DIMERBOW is available at http://lmc.uab.es/dimerbow/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Receptors, G-Protein-Coupled , Databases, Protein , Macromolecular Substances
18.
BMC Biol ; 18(1): 9, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31973708

ABSTRACT

BACKGROUND: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. RESULTS: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. CONCLUSIONS: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.


Subject(s)
Corpus Striatum/metabolism , Glutamic Acid/metabolism , Receptors, Cannabinoid/metabolism , Receptors, Purinergic P1/metabolism , Animals , Male , Rats , Rats, Wistar , Synaptic Transmission , Transfection
19.
Peptides ; 125: 170229, 2020 03.
Article in English | MEDLINE | ID: mdl-31857104

ABSTRACT

GIP is well known as a peptide regulating metabolic functions. In this review paper, we summarize a series of data on GIP receptor (GIPR). First, expression study of GIPR in human neuroendocrine tumours showed a very high incidence (nearly 100%) and a high density in both functional and non functional pancreatic tumours, ileal tumours, bronchial tumours and medullary thyroid carcinomas. Then, data on internalization of GIPR following stimulation by GIP are reported. Rapid and abundant internalization of GIPR also found in tumor pancreatic endocrine cells opens the possibility of tumor imaging and eradication using radiolabeled GIP. Interestingly, internalized GIPR continues to signal in early endosomes stimulating production of cAMP and activation of PKA, thus, supporting the view that GIPR signals from both plasma membrane and vesicles of internalization. At last, we summarize data from studies using in synergy molecular modeling and site-directed mutagenesis, which identified crucial amino acids of transmembrane domains of GIPR involved in GIPR binding site of GIP and/or in its activation and coupling to Gs protein. All together, these last molecular data may help to better understand structure-activity relationship data on GIP and GIPR.


Subject(s)
Endocytosis , Endosomes/metabolism , Neuroendocrine Tumors/pathology , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/metabolism , Animals , Humans , Neuroendocrine Tumors/metabolism , Signal Transduction , Structure-Activity Relationship
20.
Trends Biochem Sci ; 44(7): 629-639, 2019 07.
Article in English | MEDLINE | ID: mdl-30853245

ABSTRACT

Vertebrate vision starts with light absorption by visual pigments in rod and cone photoreceptor cells of the retina. Rhodopsin, in rod cells, responds to dim light, whereas three types of cone opsins (red, green, and blue) function under bright light and mediate color vision. Cone opsins regenerate with retinal much faster than rhodopsin, but the molecular mechanism of regeneration is still unclear. Recent advances in the area pinpoint transient intermediate opsin conformations, and a possible secondary retinal-binding site, as determinant factors for regeneration. In this Review, we compile previous and recent findings to discuss possible mechanisms of ligand entry in cone opsins, involving a secondary binding site, which may have relevant functional and evolutionary implications.


Subject(s)
Retinal Cone Photoreceptor Cells/chemistry , Binding Sites , Humans , Ligands , Rhodopsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...