Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 24(5): 2944-2957, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35076648

ABSTRACT

The fragmentation dynamics of the gas-phase, doubly charged camphor molecule, formed by Auger decay following carbon 1s ionisation, using soft X-ray synchrotron radiation, is presented in this work. The technique of velocity map imaging combined with a photoelectron-photoion-photoion coincidence (VMI-PEPIPICO) is used for both electron energy and ion momentum (in-sequence) measurements. The experimental study is complemented by molecular dynamics simulation, performed with an NVT (moles, volume, and temperature) ensemble. Velocity Verlet algorithms were used for time integration at various internal energies. These simulations validate observed dissociation pathways. From these, we successfully deduce that the internal energy of the doubly charged molecular ion has a significant contribution to the fragmentation mechanism. Notably, a prominent signature of the internal energy was observed in the experimentally determined energies of the neutral fragment in these deferred charge separation pathways, entailing a more detailed theoretical study to uncover the exact dissociation dynamics.

2.
Phys Chem Chem Phys ; 24(4): 1993-2003, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35018901

ABSTRACT

We have investigated the frontier orbitals of persistent organic radicals known as nitroxyls by resonant photoelectron spectroscopy (ResPES) under inner shell excitation. By means of this site-specific technique, we were able to disentangle the different atomic contributions to the outer valence molecular orbitals and examine several core-hole relaxation pathways involving the singly occupied molecular orbital (SOMO) localized on the nitroxyl group. To interpret the ResPES intensity trends, especially the strong enhancement of the SOMO ionized state at the N K-edge, we computed the Dyson spin orbitals (DSOs) pertaining to the transitions between the core-excited initial states and several of the singly ionized valence final states. We found that the computed vertical valence ionization potentials and norms of the DSOs are reasonably reliable when based on the long-range corrected CAM-B3LYP density functional. Thanks to their unpaired electrons, nitroxyls have recently found application in technological fields implying a spin control, such as spintronics and quantum computing. The present findings on the electronic structure of nitroxyl persistent radicals furnish important hints for their implementation in technological devices and, more in general, for the synthesis of new and stable organic radicals with tailored properties.

3.
Faraday Discuss ; 228(0): 242-265, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33687396

ABSTRACT

The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range 19-40 eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the C2H2+ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the 4π-collection geometry of the velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.

4.
J Synchrotron Radiat ; 28(Pt 2): 383-391, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33650549

ABSTRACT

Synchrotron radiation sources have been used to study the focusing properties and angular distribution of X-ray radiation at the exit of spherically bent microchannel plates (MCPs). In this contribution it is shown how soft X-ray radiation at energies up to 1.5 keV can be focused by spherically bent MCPs with curvature radii R of 30 mm and 50 mm. For these devices, a focus spot is detectable at a distance between the detector and the MCP of less than R/2, with a maximum focusing efficiency up to 23% of the flux illuminating the MCP. The soft X-ray radiation collected at the exit of microchannels of spherically bent MCPs are analyzed in the framework of a wave approximation. A theoretical model for the wave propagation of radiation through MCPs has been successfully introduced to explain the experimental results. Experimental data and simulations of propagating radiation represent a clear confirmation of the wave channeling phenomenon for the radiation in spherically bent MCPs.

5.
Phys Chem Chem Phys ; 22(18): 10149-10157, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32347252

ABSTRACT

Embedded atoms or molecules in a photoexcited He nanodroplet are well-known to be ionized through inter-atomic relaxation in a Penning process. In this work, we investigate the Penning ionization of acetylene oligomers occurring from the photoexcitation bands of He nanodroplets. In close analogy to conventional Penning electron spectroscopy by thermal atomic collisions, the n = 2 photoexcitation band plays the role of the metastable atomic 1s2s 3,1S He*. This facilitates electron spectroscopy of acetylene aggregates in the sub-Kelvin He environment, providing the following insight into their structure: the molecules in the dopant cluster are loosely bound van der Waals complexes rather than forming covalent compounds. In addition, this work reveals a Penning process stemming from the n = 4 band where charge-transfer from autoionized He in the droplets is known to be the dominant relaxation channel. This allows for excited states of the remnant dopant oligomer Penning-ions to be studied. Hence, we demonstrate Penning ionization electron spectroscopy of doped droplets as an effective technique for investigating dopant oligomers which are easily formed by attachment to the host cluster.

6.
Nat Commun ; 11(1): 112, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31913265

ABSTRACT

The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He[Formula: see text]) within 1 ps. Subsequently, the bubble collapses and releases metastable He[Formula: see text] at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.

7.
Phys Chem Chem Phys ; 21(32): 17959-17970, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31384854

ABSTRACT

The starburst π-conjugated molecule 4,4',4''-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (C57H48N4, m-MTDATA), based on triphenylamine (TPA) building blocks, is widely used in optoelectronic devices due to its good electron-donor characteristics. The electronic structure of m-MTDATA was investigated for the first time in the gas phase by means of PhotoElectron Spectroscopy (PES) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The combination of Density Functional Theory (DFT) calculations with the experimental spectra provides a comprehensive description of the molecular electronic structure. Moreover, by comparing the results with previous TPA measurements, we could shed light on how the electronic structure evolves when the molecular size is increased. We found that the C 1s photoelectron spectra of m-MTDATA and TPA are similar, due to the balance of the counter-acting effects of the electronegativity of the N atoms and the delocalization of the amine lone-pair electrons. In contrast, the increased number of N atoms (i.e. N lone pairs) in m-MTDATA determines a three-peak feature in the outermost valence binding energy region with strong contributions by the N 2pz orbitals. We also obtained a decrease of the HOMO-LUMO gap for m-MTDATA, which points to improved electron donating properties of m-MTDATA with respect to TPA.

8.
Phys Rev Lett ; 122(13): 133001, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-31012607

ABSTRACT

Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance, e.g., in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H^{*}) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing extreme ultraviolet femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states.

9.
J Phys Chem A ; 122(44): 8745-8761, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30351097

ABSTRACT

The near-edge x-ray-absorption fine-structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) spectra of benzo[ b]thiophene (BBT) and dibenzothiophene (DBT) in the gas phase have been measured at the carbon K-edge and sulfur LII,III-edge regions. The assignment of the spectral features has been provided by theoretical calculations based on density functional theory (DFT) and its time-dependent generalization (TDDFT) in the linear response regime. Observed trends in computed C 1s and S 2p ionization potentials (IPs) have been rationalized in terms of both the inductive effects due to the presence of S and the increased π-electrons delocalization arising from the benzo-annulation process. The analysis of the NEXAFS carbon K-edge and sulfur LII,III-edge regions provided information on both low-lying delocalized virtual π orbitals, and higher-lying localized σ*(C-S) states. The evolution of the NEXAFS carbon K-edge spectral features along the series thiophene (T) and derivatives, BBT and DBT, is informative of a stabilizing effect due to increased aromaticity. This effect is however more pronounced in going from T to BBT compared to the introduction of a second annulated phenyl ring in DBT. The nature of the most intense sulfur LII,III-edge NEXAFS spectral features is instead conserved along the series reflecting thus the localized nature of the virtual states involved in the S 2p core-excitation process.

10.
Nat Commun ; 9(1): 63, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29302026

ABSTRACT

The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft X-ray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation-deexcitation and fragmentation in pump-probe experiments on the 50-femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail.

11.
Phys Rev Lett ; 120(2): 023901, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29376703

ABSTRACT

Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (∼284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

12.
Phys Rev Lett ; 118(3): 033202, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28157370

ABSTRACT

The hitherto unexplored two-photon doubly excited states [Ne^{*}(2p^{-1}3s)]_{2} were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne_{2}^{+} ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390(-130/+450) fs, and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.

13.
J Chem Phys ; 146(5): 054705, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28178795

ABSTRACT

Photoelectron Spectroscopy (PS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy have been used to investigate the occupied and empty density of states of biphenylene films of different thicknesses, deposited onto a Cu(111) crystal. The obtained results have been compared to previous gas phase spectra and single molecule Density Functional Theory (DFT) calculations to get insights into the possible modification of the molecular electronic structure in the film induced by the adsorption on a surface. Furthermore, NEXAFS measurements allowed characterizing the variation of the molecular arrangement with the film thickness and helped to clarify the substrate-molecule interaction.

14.
J Chem Phys ; 146(5): 054303, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28178810

ABSTRACT

The electronic structure of short-chain thiophenes (thiophene, 2,2'-bithiophene, and 2,2':5',2″-terthiophene) in the gas phase has been investigated by combining the outcomes of Near-Edge X-ray-Absorption Fine-Structure (NEXAFS) and X-ray Photoemission Spectroscopy (XPS) at the C K-edge with those of density functional theory (DFT) calculations. The calculated NEXAFS spectra provide a comprehensive description of the main experimental features and allow their attribution. The evolution of the C1s NEXAFS spectral features is analyzed as a function of the number of thiophene rings; a tendency to stabilization for increasing chain length is found. The computation of the binding energy allows to assign the experimental XPS peaks to the different carbon sites on the basis of both the inductive effects generated by the presence of the S atom as well as of the differential aromaticity effects.

15.
Phys Rev Lett ; 118(1): 013002, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106422

ABSTRACT

Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He^{+}(3p) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed.

16.
J Chem Phys ; 147(24): 244301, 2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29289119

ABSTRACT

The Near-Edge X-ray-Absorption Fine-Structure (NEXAFS) and X-ray Photoemission Spectroscopy (XPS) of short-chain oligothiophenes (thiophene, 2,2'-bithiophene, and 2,2':5',2″-terthiophene) in the gas phase have been measured in the sulfur L2,3-edge region. The assignment of the spectral features is based on the relativistic two-component zeroth-order regular approximation time dependent density functional theory approach. The calculations allow us to estimate both the contribution of the spin-orbit splitting and of the molecular-field splitting to the sulfur binding energies and give results in good agreement with the experimental measurements. The deconvolution of the calculated S2p NEXAFS spectra into the two manifolds of excited states converging to the LIII and LII edges facilitates the attribution of the spectral structures. The main S2p NEXAFS features are preserved along the series both as concerns the energy positions and the nature of the transitions. This behaviour suggests that the electronic and geometrical environment of the sulfur atom in the three oligomers is relatively unaffected by the increasing chain length. This trend is also observed in the XPS spectra. The relatively simple structure of S2p NEXAFS spectra along the series reflects the localized nature of the virtual states involved in the core excitation process.

17.
Phys Rev Lett ; 116(20): 203001, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27258866

ABSTRACT

We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

18.
Phys Rev Lett ; 117(27): 276806, 2016 Dec 30.
Article in English | MEDLINE | ID: mdl-28084773

ABSTRACT

Ne clusters (∼5000 atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.

19.
Phys Rev Lett ; 113(24): 247202, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25541801

ABSTRACT

Thin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already.

20.
Rev Sci Instrum ; 85(10): 103112, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25362376

ABSTRACT

A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25-800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...