Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 3138, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816287

ABSTRACT

Maternal age has a negative effect on offspring lifespan in a range of taxa and is hypothesized to influence the evolution of aging. However, the mechanisms of maternal age effects are unknown, and it remains unclear if maternal age alters offspring response to therapeutic interventions to aging. Here, we evaluate maternal age effects on offspring lifespan, reproduction, and the response to caloric restriction, and investigate maternal investment as a source of maternal age effects using the rotifer, Brachionus manjavacas, an aquatic invertebrate. We found that offspring lifespan and fecundity decline with increasing maternal age. Caloric restriction increases lifespan in all offspring, but the magnitude of lifespan extension is greater in the offspring from older mothers. The trade-off between reproduction and lifespan extension under low food conditions expected by life history theory is observed in young-mother offspring, but not in old-mother offspring. Age-related changes in maternal resource allocation to reproduction do not drive changes in offspring fitness or plasticity under caloric restriction in B. manjavacas. Our results suggest that the declines in reproduction in old-mother offspring negate the evolutionary fitness benefits of lifespan extension under caloric restriction.


Subject(s)
Caloric Restriction , Longevity , Rotifera/physiology , Aging , Animals , Female , Fertility , Male , Maternal Age , Reproduction
2.
Exp Gerontol ; 114: 99-106, 2018 12.
Article in English | MEDLINE | ID: mdl-30399408

ABSTRACT

Lifespan extension under low temperature is well conserved across both endothermic and exothermic taxa, but the mechanism underlying this change in aging is poorly understood. Low temperature is thought to decrease metabolic rate, thus slowing the accumulation of cellular damage from reactive oxygen species, although recent evidence suggests involvement of specific cold-sensing biochemical pathways. We tested the effect of low temperature on aging in 11 strains of Brachionus rotifers, with the hypothesis that if the mechanism of lifespan extension is purely thermodynamic, all strains should have a similar increase in lifespan. We found differences in change in median lifespan ranging from a 6% decrease to a 100% increase, as well as differences in maximum and relative lifespan extension and in mortality rate. Low temperature delays reproductive senescence in most strains, suggesting an extension of healthspan, even in strains with little to no change in lifespan. The combination of low temperature and caloric restriction in one strain resulted in an additive lifespan increase, indicating these interventions may work via non- or partially-overlapping pathways. The known low temperature sensor TRPA1 is present in the rotifer genome, but chemical TRPA1 agonists did not affect lifespan, suggesting that this gene may be involved in low temperature sensation but not in chemoreception in rotifers. The congeneric variability in response to low temperature suggests that the mechanism of low temperature lifespan extension is an active genetic process rather than a passive thermodynamic one and is dependent upon genotype.


Subject(s)
Cold Temperature , Longevity , Rotifera/genetics , Rotifera/physiology , Animals , Caloric Restriction , Gene Expression Regulation , Reactive Oxygen Species/metabolism , Reproduction , TRPA1 Cation Channel/genetics
SELECTION OF CITATIONS
SEARCH DETAIL