Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 107(5): 689-93, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8875950

ABSTRACT

Cloudman S-91 mouse melanoma cells respond to alpha-melanocyte-stimulating hormone) by demonstrating a marked increase in tyrosinase activity (O-diphenol-O2 oxidoreductase, EC 1.14.18.1). This increase is the result of increased levels of tyrosinase mRNA with a subsequent increase in tyrosinase abundance. Our studies were carried out to determine the effect of melanocyte-stimulating hormone on tyrosinase gene transcription and to measure the kinetics of the hormone-induced increase in tyrosinase mRNA. When melanoma cells were exposed continuously to melanocyte-stimulating hormone for 6 d, a large but transient increase in both tyrosinase mRNA abundance and enzyme activity were observed. The maximum increase in tyrosinase mRNA occurred 60 h after melanocyte-stimulating hormone stimulation and was followed by a decline in message levels even though cells were continuously exposed to hormone. Results of nuclear run-off transcription assays showed that melanocyte-stimulating hormone caused a slow increase in the rate of transcription of the tyrosinase gene with a maximal 6-fold stimulation occurring at 48 h. In cells treated with the ribonucleic acid synthesis inhibitor, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, tyrosinase mRNA levels decayed with a half-life of 4-5 h. This decay rate was unaffected by treatment of cells with melanocyte-stimulating hormone, indicating that the hormone does not act to stabilize tyrosinase ribonucleic acid. Inhibition of protein synthesis by treatment with cycloheximide had no effect on the melanocyte-stimulating hormone-induced increase in tyrosinase messenger ribonucleic acid levels suggesting that ongoing protein synthesis is not required for, at least, the initial stimulation of tyrosinase gene transcription by melanocyte-stimulating hormone.


Subject(s)
Gene Expression Regulation, Enzymologic/drug effects , Melanocyte-Stimulating Hormones/pharmacology , Melanoma, Experimental/enzymology , Monophenol Monooxygenase/genetics , RNA, Messenger/analysis , Animals , Chloramphenicol O-Acetyltransferase/genetics , Cyclic AMP/physiology , Cycloheximide/pharmacology , Mice , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL