Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
bioRxiv ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-36415470

ABSTRACT

Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.

2.
Vaccines (Basel) ; 10(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36560562

ABSTRACT

Around the world, rollout of COVID-19 vaccines has been used as a strategy to end COVID-19-related restrictions and the pandemic. Several COVID-19 vaccine platforms have successfully protected against severe SARS-CoV-2 infection and subsequent deaths. Here, we compared humoral and cellular immunity in response to either infection or vaccination. We examined SARS-CoV-2 spike-specific immune responses from Pfizer/BioNTech BNT162b2, Moderna mRNA-1273, Janssen Ad26.COV2.S, and SARS-CoV-2 infection approximately 4 months post-exposure or vaccination. We found that these three vaccines all generate relatively similar immune responses and elicit a stronger response than natural infection. However, antibody responses to recent viral variants are diminished across all groups. The similarity of immune responses from the three vaccines studied here is an important finding in maximizing global protection as vaccination campaigns continue.

3.
Ann Neurol ; 91(6): 782-795, 2022 06.
Article in English | MEDLINE | ID: mdl-35289960

ABSTRACT

OBJECTIVE: The objective of this study was to determine the impact of multiple sclerosis (MS) disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. METHODS: Patients with MS aged 18 to 60 years were evaluated for anti-nucleocapsid and anti-Spike receptor-binding domain (RBD) antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture enzyme-linked immunosorbent assay (ELISA); and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS: Between January 6, 2021, and July 21, 2021, 389 patients with MS were recruited (mean age 40.3 years; 74% women; 62% non-White). Most common DMTs were ocrelizumab (OCR)-40%; natalizumab -17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. One hundred seventy-seven patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, and 47 were asymptomatic. Antibody responses were markedly attenuated in OCR compared with other groups (p ≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p = 0.03), increased in natalizumab (p <0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r = 0.45, p = 0.0002) and non-OCR (r = 0.64, p <0.0001). Immune responses did not differ by race/ethnicity. Coronavirus disease 2019 (COVID-19) clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION: DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and nondisabled group of patients with MS. ANN NEUROL 2022;91:782-795.


Subject(s)
COVID-19 , Multiple Sclerosis , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Viral , Ethnicity , Female , Humans , Immunity, Cellular , Immunity, Humoral , Male , Natalizumab/therapeutic use , SARS-CoV-2
5.
Sci Transl Med ; 14(631): eabi8961, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-34874183

ABSTRACT

The use of coronavirus disease 2019 (COVID-19) vaccines will play the major role in helping to end the pandemic that has killed millions worldwide. COVID-19 vaccines have resulted in robust humoral responses and protective efficacy in human trials, but efficacy trials excluded individuals with a prior diagnosis of COVID-19. As a result, little is known about how immune responses induced by mRNA vaccines differ in individuals who recovered from COVID-19. Here, we evaluated longitudinal immune responses to two-dose BNT162b2 mRNA vaccination in 15 adults who had experienced COVID-19, compared to 21 adults who did not have prior COVID-19. Consistent with prior studies of mRNA vaccines, we observed robust cytotoxic CD8+ T cell responses in both cohorts after the second dose. Furthermore, SARS-CoV-2­naive individuals had progressive increases in humoral and antigen-specific antibody-secreting cell (ASC) responses after each dose of vaccine, whereas SARS-CoV-2­experienced individuals demonstrated strong humoral and antigen-specific ASC responses to the first dose but these responses were not further enhanced after the second dose of the vaccine at the time points studied. Together, these data highlight the relevance of immunological history for understanding vaccine immune responses and may have implications for personalizing mRNA vaccination regimens used to prevent COVID-19, including for the deployment of booster shots.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Vaccines, Synthetic , mRNA Vaccines
6.
Arthritis Rheumatol ; 74(2): 284-294, 2022 02.
Article in English | MEDLINE | ID: mdl-34347939

ABSTRACT

OBJECTIVE: To evaluate seroreactivity and disease flares after COVID-19 vaccination in a multiethnic/multiracial cohort of patients with systemic lupus erythematosus (SLE). METHODS: Ninety SLE patients and 20 healthy controls receiving a complete COVID-19 vaccine regimen were included. IgG seroreactivity to the SARS-CoV-2 spike receptor-binding domain (RBD) and SARS-CoV-2 microneutralization were used to evaluate B cell responses; interferon-γ (IFNγ) production was measured by enzyme-linked immunospot (ELISpot) assay in order to assess T cell responses. Disease activity was measured by the hybrid SLE Disease Activity Index (SLEDAI), and flares were identified according to the Safety of Estrogens in Lupus Erythematosus National Assessment-SLEDAI flare index. RESULTS: Overall, fully vaccinated SLE patients produced significantly lower IgG antibodies against SARS-CoV-2 spike RBD compared to fully vaccinated controls. Twenty-six SLE patients (28.8%) generated an IgG response below that of the lowest control (<100 units/ml). In logistic regression analyses, the use of any immunosuppressant or prednisone and a normal anti-double-stranded DNA antibody level prior to vaccination were associated with decreased vaccine responses. IgG seroreactivity to the SARS-CoV-2 spike RBD strongly correlated with the SARS-CoV-2 microneutralization titers and correlated with antigen-specific IFNγ production determined by ELISpot. In a subset of patients with poor antibody responses, IFNγ production was similarly diminished. Pre- and postvaccination SLEDAI scores were similar in both groups. Postvaccination flares occurred in 11.4% of patients; 1.3% of these were severe. CONCLUSION: In a multiethnic/multiracial study of SLE patients, 29% had a low response to the COVID-19 vaccine which was associated with receiving immunosuppressive therapy. Reassuringly, severe disease flares were rare. While minimal protective levels remain unknown, these data suggest that protocol development is needed to assess the efficacy of booster vaccination.


Subject(s)
Antirheumatic Agents/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunocompromised Host , Immunogenicity, Vaccine , Immunosuppressive Agents/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Ad26COVS1/therapeutic use , Adult , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/therapeutic use , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Enzyme-Linked Immunospot Assay , Female , Glucocorticoids/therapeutic use , Humans , Immunoglobulin G/immunology , Interferon-gamma/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/physiopathology , Male , Middle Aged , Neutralization Tests , Prednisone/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Symptom Flare Up
7.
Ann Rheum Dis ; 80(10): 1339-1344, 2021 10.
Article in English | MEDLINE | ID: mdl-34035003

ABSTRACT

OBJECTIVE: To investigate the humoral and cellular immune response to messenger RNA (mRNA) COVID-19 vaccines in patients with immune-mediated inflammatory diseases (IMIDs) on immunomodulatory treatment. METHODS: Established patients at New York University Langone Health with IMID (n=51) receiving the BNT162b2 mRNA vaccination were assessed at baseline and after second immunisation. Healthy subjects served as controls (n=26). IgG antibody responses to the spike protein were analysed for humoral response. Cellular immune response to SARS-CoV-2 was further analysed using high-parameter spectral flow cytometry. A second independent, validation cohort of controls (n=182) and patients with IMID (n=31) from Erlangen, Germany, were also analysed for humoral immune response. RESULTS: Although healthy subjects (n=208) and patients with IMID on biologic treatments (mostly on tumour necrosis factor blockers, n=37) demonstrate robust antibody responses (over 90%), those patients with IMID on background methotrexate (n=45) achieve an adequate response in only 62.2% of cases. Similarly, patients with IMID on methotrexate do not demonstrate an increase in CD8+ T-cell activation after vaccination. CONCLUSIONS: In two independent cohorts of patients with IMID, methotrexate, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut-offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking methotrexate to increase the chances of immunisation efficacy against SARS-CoV-2 as has been demonstrated for augmenting immunogenicity to other viral vaccines.

8.
medRxiv ; 2021 May 12.
Article in English | MEDLINE | ID: mdl-34013285

ABSTRACT

OBJECTIVE: To investigate the humoral and cellular immune response to mRNA COVID-19 vaccines in patients with immune-mediated inflammatory diseases (IMIDs) on immunomodulatory treatment. METHODS: Established patients at NYU Langone Health with IMID (n=51) receiving the BNT162b2 mRNA vaccination were assessed at baseline and after second immunization. Healthy subjects served as controls (n=26). IgG antibody responses to the spike protein were analyzed for humoral response. Cellular immune response to SARS-CoV-2 was further analyzed using high-parameter spectral flow cytometry. A second independent, validation cohort of controls (n=182) and patients with IMID (n=31) from Erlangen, Germany were also analyzed for humoral immune response. RESULTS: Although healthy subjects (n=208) and IMID patients on biologic treatments (mostly on TNF blockers, n=37) demonstrate robust antibody responses (over 90%), those patients with IMID on background methotrexate (n=45) achieve an adequate response in only 62.2% of cases. Similarly, IMID patients do not demonstrate an increase in CD8+ T cell activation after vaccination. CONCLUSIONS: In two independent cohorts of IMID patients, methotrexate, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking methotrexate to increase the chances of immunization efficacy against SARS-CoV-2 as has been demonstrated for augmenting immunogenicity to other viral vaccines. KEY MESSAGES: What is already known about this subject?: The impact of COVID-19 has been felt across the globe and new hope has arisen with the approval of mRNA vaccines against the SARS-CoV-2. Studies have shown immunogenicity and efficacy rates of over 90% in the immunocompetent adult population. However, there is a lack of knowledge surrounding the response of patients with immune-mediated inflammatory diseases (IMIDs) who may also be on immunomodulatory medications.Patients with IMID have been shown to have attenuated immune responses to seasonal influenza vaccination.What does this study add?: This study looks at the humoral and cellular immune response to two doses of BNT162b2 mRNA COVID-19 Vaccine in participants with IMID (on immunomodulators) compared with healthy controls.Individuals with IMID on methotrexate demonstrate up to a 62% reduced rate of adequate immunogenicity to the BNT162b2 mRNA vaccination. Those on anti-cytokine or non-methotrexate oral medications demonstrate similar levels of immunogenicity as healthy controls (greater than 90%).Similarly, vaccination did not induce an activated CD8+ T cell response in participants on background methotrexate, unlike healthy controls and patients with IMID not receiving methotrexate.How might this impact of clinical practice or future developments?: These results suggest that patients on methotrexate may need alternate vaccination strategies such as additional doses of vaccine, dose modification of methotrexate, or even a temporary discontinuation of this drug. Further studies will be required to explore the effect of these approaches on mRNA vaccine immunogenicity.

9.
medRxiv ; 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-33594383

ABSTRACT

The use of COVID-19 vaccines will play the major role in helping to end the pandemic that has killed millions worldwide. COVID-19 vaccines have resulted in robust humoral responses and protective efficacy in human trials, but efficacy trials excluded individuals with a prior diagnosis of COVID-19. As a result, little is known about how immune responses induced by mRNA vaccines differ in individuals who recovered from COVID-19. Here, we evaluated longitudinal immune responses to two-dose BNT162b2 mRNA vaccination in 15 adults who recovered from COVID-19, compared to 21 adults who did not have prior COVID-19 diagnosis. Consistent with prior studies of mRNA vaccines, we observed robust cytotoxic CD8+ T cell responses in both cohorts following the second dose. Furthermore, SARS-CoV-2-naive individuals had progressive increases in humoral and antigen-specific antibody-secreting cell (ASC) responses following each dose of vaccine, whereas SARS-CoV-2-experienced individuals demonstrated strong humoral and antigen-specific ASC responses to the first dose but muted responses to the second dose of the vaccine at the time points studied. Together, these data highlight the relevance of immunological history for understanding vaccine immune responses and may have significant implications for personalizing mRNA vaccination regimens used to prevent COVID-19, including booster shots.

11.
Am J Respir Cell Mol Biol ; 60(6): 637-649, 2019 06.
Article in English | MEDLINE | ID: mdl-30562042

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary artery pressure and vascular resistance, typically leading to right heart failure and death. Current therapies improve quality of life of the patients but have a modest effect on long-term survival. A detailed transcriptomics and systems biology view of the PAH lung is expected to provide new testable hypotheses for exploring novel treatments. We completed transcriptomics analysis of PAH and control lung tissue to develop disease-specific and clinical data/tissue pathology gene expression classifiers from expression datasets. Gene expression data were integrated into pathway analyses. Gene expression microarray data were collected from 58 PAH and 25 control lung tissues. The strength of the dataset and its derived disease classifier was validated using multiple approaches. Pathways and upstream regulators analyses was completed with standard and novel graphical approaches. The PAH lung dataset identified expression patterns specific to PAH subtypes, clinical parameters, and lung pathology variables. Pathway analyses indicate the important global role of TNF and transforming growth factor signaling pathways. In addition, novel upstream regulators and insight into the cellular and innate immune responses driving PAH were identified. Finally, WNT-signaling pathways may be a major determinant underlying the observed sex differences in PAH. This study provides a transcriptional framework for the PAH-diseased lung, supported by previously reported findings, and will be a valuable resource to the PAH research community. Our investigation revealed novel potential targets and pathways amenable to further study in a variety of experimental systems.


Subject(s)
Lung/metabolism , Lung/pathology , Pulmonary Arterial Hypertension/genetics , Systems Analysis , Transcriptome/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Gene Expression Regulation , Gene Ontology , Humans , Infant , Male , Middle Aged , Pulmonary Arterial Hypertension/pathology , Sex Characteristics , Signal Transduction/genetics , Young Adult
12.
Am J Respir Crit Care Med ; 189(9): 1110-20, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24605778

ABSTRACT

RATIONALE: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary artery pressure, vascular remodeling, and ultimately right ventricular heart failure. PAH can have a genetic component (heritable PAH), most often through mutations of bone morphogenetic protein receptor 2, and idiopathic and associated forms. Heritable PAH is not completely penetrant within families, with approximately 20% concurrence of inactivating bone morphogenetic protein receptor 2 mutations and delayed onset of PAH disease. Because one of the treatment options is using prostacyclin analogs, we hypothesized that prostacyclin synthase promoter sequence variants associated with increased mRNA expression may play a protective role in the bone morphogenetic protein receptor 2 unaffected carriers. OBJECTIVES: To characterize the range of prostacyclin synthase promoter variants and assess their transcriptional activities in PAH-relevant cell types. To determine the distribution of prostacyclin synthase promoter variants in PAH, unaffected carriers in heritable PAH families, and control populations. METHODS: Polymerase chain reaction approaches were used to genotype prostacyclin synthase promoter variants in more than 300 individuals. Prostacyclin synthase promoter haplotypes' transcriptional activities were determined with luciferase reporter assays. MEASUREMENTS AND MAIN RESULTS: We identified a comprehensive set of prostacyclin synthase promoter variants and tested their transcriptional activities in PAH-relevant cell types. We demonstrated differences of prostacyclin synthase promoter activities dependent on their haplotype. CONCLUSIONS: Prostacyclin synthase promoter sequence variants exhibit a range of transcriptional activities. We discovered a significant bias for more active prostacyclin synthase promoter variants in unaffected carriers as compared with affected patients with PAH.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Cytochrome P-450 Enzyme System/genetics , Heterozygote , Hypertension, Pulmonary/genetics , Intramolecular Oxidoreductases/genetics , Polymorphism, Genetic , Case-Control Studies , Cytochrome P-450 Enzyme System/physiology , Disease Progression , Familial Primary Pulmonary Hypertension , Female , Haplotypes , Humans , Intramolecular Oxidoreductases/physiology , Male , Mutation , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...