Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
3.
Sci Rep ; 14(1): 2033, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263350

ABSTRACT

Rapid expansion of the pulmonary microvasculature through angiogenesis drives alveolarization, the final stage of lung development that occurs postnatally and dramatically increases lung gas-exchange surface area. Disruption of pulmonary angiogenesis induces long-term structural and physiologic lung abnormalities, including bronchopulmonary dysplasia, a disease characterized by compromised alveolarization. Although endothelial cells are primary determinants of pulmonary angiogenesis, mesenchymal cells (MC) play a critical and dual role in angiogenesis and alveolarization. Therefore, we performed single cell transcriptomics and in-situ imaging of the developing lung to profile mesenchymal cells during alveolarization and in the context of lung injury. Specific mesenchymal cell subtypes were present at birth with increasing diversity during alveolarization even while expressing a distinct transcriptomic profile from more mature correlates. Hyperoxia arrested the transcriptomic progression of the MC, revealed differential cell subtype vulnerability with pericytes and myofibroblasts most affected, altered cell to cell communication, and led to the emergence of Acta1 expressing cells. These insights hold the promise of targeted treatment for neonatal lung disease, which remains a major cause of infant morbidity and mortality across the world.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Mesenchymal Stem Cells , Infant, Newborn , Infant , Humans , Endothelial Cells , Lung
4.
Sci Adv ; 10(3): eadk1057, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241369

ABSTRACT

Preterm birth affects ~10% of pregnancies in the US. Despite familial associations, identifying at-risk genetic loci has been challenging. We built deep learning and graphical models to score mutational effects at base resolution via integrating the pregnant myometrial epigenome and large-scale patient genomes with spontaneous preterm birth (sPTB) from European and African American cohorts. We uncovered previously unidentified sPTB genes that are involved in myometrial muscle relaxation and inflammatory responses and that are regulated by the progesterone receptor near labor onset. We studied genomic variants in these genes in our recruited pregnant women administered progestin prophylaxis. We observed that mutation burden in these genes was predictive of responses to progestin treatment for preterm birth. To advance therapeutic development, we screened ~4000 compounds, identified candidate molecules that affect our identified genes, and experimentally validated their therapeutic effects on regulating labor. Together, our integrative approach revealed the druggable genome in preterm birth and provided a generalizable framework for studying complex diseases.


Subject(s)
Premature Birth , Infant, Newborn , Female , Humans , Pregnancy , Premature Birth/genetics , Progestins , Genetic Loci , Mutation
5.
J Am Heart Assoc ; 13(3): e029427, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293915

ABSTRACT

BACKGROUND: The right ventricle (RV) is at risk in patients with complex congenital heart disease involving right-sided obstructive lesions. We have shown that capillary rarefaction occurs early in the pressure-loaded RV. Here we test the hypothesis that microRNA (miR)-34a, which is induced in RV hypertrophy and RV failure (RVF), blocks the hypoxia-inducible factor-1α-vascular endothelial growth factor (VEGF) axis, leading to the attenuated angiogenic response and increased susceptibility to RV failure. METHODS AND RESULTS: Mice underwent pulmonary artery banding to induce RV hypertrophy and RVF. Capillary rarefaction occurred immediately. Although hypoxia-inducible factor-1α expression increased (0.12±0.01 versus 0.22±0.03, P=0.05), VEGF expression decreased (0.61±0.03 versus 0.22±0.05, P=0.01). miR-34a expression was most upregulated in fibroblasts (4-fold), but also in cardiomyocytes and endothelial cells (2-fold). Overexpression of miR-34a in endothelial cells increased cell senescence (10±3% versus 22±2%, P<0.05) by suppressing sirtulin 1 expression, and decreased tube formation by 50% via suppression of hypoxia-inducible factor-1α, VEGF A, VEGF B, and VEGF receptor 2. miR-34a was induced by stretch, transforming growth factor-ß1, adrenergic stimulation, and hypoxia in cardiac fibroblasts and cardiomyocytes. In mice with RVF, locked nucleic acid-antimiR-34a improved RV shortening fraction and survival half-time and restored capillarity and VEGF expression. In children with congenital heart disease-related RVF, RV capillarity was decreased and miR-34a increased 5-fold. CONCLUSIONS: In summary, miR-34a from fibroblasts, cardiomyocytes, and endothelial cells mediates capillary rarefaction by suppressing the hypoxia-inducible factor-1α-VEGF axis in RV hypertrophy/RVF, raising the potential for anti-miR-34a therapeutics in patients with at-risk RVs.


Subject(s)
Heart Defects, Congenital , Heart Failure , MicroRNAs , Microvascular Rarefaction , Child , Humans , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Angiogenesis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Microvascular Rarefaction/metabolism , Heart Failure/metabolism , Hypertrophy, Right Ventricular , Myocytes, Cardiac/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Heart Defects, Congenital/metabolism
6.
Obstet Gynecol ; 143(1): 104-112, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37917943

ABSTRACT

OBJECTIVE: To evaluate whether prophylactic administration of 1 g of intravenous calcium chloride after cord clamping reduces blood loss from uterine atony during intrapartum cesarean delivery. METHODS: This single-center, block-randomized, placebo-controlled, double-blind superiority trial compared the effects of 1 g intravenous calcium chloride with those of saline placebo control on blood loss at cesarean delivery. Parturients at 34 or more weeks of gestation requiring intrapartum cesarean delivery after oxytocin exposure in labor were enrolled. Calcium or saline placebo was infused over 10 minutes beginning 1 minute after umbilical cord clamping in addition to standard care with oxytocin. The primary outcome was quantitative blood loss, analyzed by inverse Gaussian regression. Planned subgroup analysis excluded nonatonic bleeding, such as hysterotomy extension, arterial bleeding, and occult placenta accreta. We planned to enroll 120 patients to show a 200-mL reduction in quantitative blood loss in planned subgroup analysis, assuming up to 40% incidence of nonatonic bleeding (80% power, α<0.05). RESULTS: From April 2022 through March 2023, 828 laboring parturients provided consent and 120 participants were enrolled. Median blood loss was 840 mL in patients allocated to calcium chloride (n=60) and 1,051 mL in patients allocated to placebo (n=60), which was not statistically different (mean reduction 211 mL, 95% CI -33 to 410). In the planned subgroup analysis (n=39 calcium and n=40 placebo), excluding cases of surgeon-documented nonatonic bleeding, calcium reduced quantitative blood loss by 356 mL (95% CI 159-515). Rates of reported side effects were similar between the two groups (38% calcium vs 42% placebo). CONCLUSION: Prophylactic intravenous calcium chloride administered during intrapartum cesarean delivery after umbilical cord clamping did not significantly reduce blood loss in the primary analysis. However, in the planned subgroup analysis, calcium infusion significantly reduced blood loss by approximately 350 mL. These data suggest that this inexpensive and shelf-stable medication warrants future study as a novel treatment strategy to decrease postpartum hemorrhage, the leading global cause of maternal morbidity and mortality. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov , NCT05027048.


Subject(s)
Oxytocin , Postpartum Hemorrhage , Pregnancy , Female , Humans , Calcium , Calcium Chloride , Cesarean Section/adverse effects , Postpartum Hemorrhage/etiology , Calcium, Dietary
7.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L741-L755, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37847687

ABSTRACT

Pulmonary arterial hypertension (PAH) is a disease characterized by increased vasoconstriction and vascular remodeling. Pulmonary artery smooth muscle cells (PASMCs) highly express the transcription factor hypoxia-inducible factor-1α (HIF-1α), yet the role of PASMC HIF-1α in the development of PAH remains controversial. To study the role of SMC HIF-1α in the pulmonary vascular response to acute and chronic hypoxia, we used a gain-of-function strategy to stabilize HIF-1α in PASMC by generating mice lacking prolyl hydroxylase domain (PHD) 1 and 2 in SM22α-expressing cells. This strategy increased HIF-1α expression and transcriptional activity under conditions of normoxia and hypoxia. Acute hypoxia increased right ventricular systolic pressure (RVSP) in control, but not in SM22α-PHD1/2-/- mice. Chronic hypoxia increased RVSP and vascular remodeling more in control SM22α-PHD1/2+/+ than in SM22α-PHD1/2-/- mice. In vitro studies demonstrated increased contractility and myosin light chain phosphorylation in isolated PHD1/2+/+ compared with PHD1/2-/- PASMC under both normoxic and hypoxic conditions. After chronic hypoxia, there was more p27 and less vascular remodeling in SM22α-PHD1/2-/- compared with SM22α-PHD1/2+/+ mice. Hypoxia increased p27 in PASMC isolated from control patients, but not in cells from patients with idiopathic pulmonary arterial hypertension (IPAH). These findings highlight an SM22α-expressing cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling. Modulating HIF-1α expression in PASMC may represent a promising preventative and therapeutic strategy for patients with PAH.NEW & NOTEWORTHY In a mouse model wherein hypoxia-inducible factor 1 alpha (HIF-1α) is stabilized in vascular smooth muscle cells, we found that HIF-1α regulates vasoconstriction by limiting phosphorylation of myosin light chain and regulates vascular remodeling through p27 induction. These findings highlight a cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Humans , Mice , Familial Primary Pulmonary Hypertension/metabolism , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myocytes, Smooth Muscle/metabolism , Myosin Light Chains/metabolism , Prolyl Hydroxylases/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , Vascular Remodeling
8.
Pediatrics ; 152(4)2023 10 01.
Article in English | MEDLINE | ID: mdl-37671451

ABSTRACT

Treatment, prognosis, and quality of life for people with cystic fibrosis (CF) have improved steadily since the initial description of the disease, but most dramatically in the past decade. In 2021, the median predicted survival increased to 53 years, compared with 17 years in 1970. The recent improvement in outcomes is attributable to the advent of cystic fibrosis transmembrane regulator (CFTR) modulators, small molecules that enhance the function of defective CFTR protein. The first CFTR modulator, ivacaftor, received Food and Drug Administration approval in 2011 to treat a single CFTR variant, comprising only 4% of those affected by CF. With the demonstration of efficacy, drug approval has been expanded to other variants. Multiple CFTR modulators used in combination with ivacaftor augment efficacy and increase the number of CFTR variants amenable to therapy. Approval of elexecaftor/tezecaftor/ivacaftor in 2019 increased the number of individuals who could benefit from highly effective modulator therapy (HEMT) to ∼90% of the CF population in the United States. HEMT has been dramatically effective, with overall improvements in lung function, quality of life, nutritional status, and, in women, increased fertility. HEMT may delay the onset of other CF-related comorbidities. Although off-target effects, including hepatotoxicity, drug-drug interactions, and putative mental health issues can complicate use, modulator therapy has been generally well tolerated. Ten percent of people with CF have variants that are not amenable to modulator treatment. HEMT, despite its great cost and limited global access, has brought legitimate hope and changed the lives of a significant majority of individuals and families affected by CF in North America.


Subject(s)
Cystic Fibrosis , Female , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Quality of Life , Aminophenols/therapeutic use , Aminophenols/adverse effects , Mutation
9.
Am J Respir Cell Mol Biol ; 69(4): 470-483, 2023 10.
Article in English | MEDLINE | ID: mdl-37290124

ABSTRACT

Worldwide, the incidence of both preterm births and chronic lung disease of infancy, or bronchopulmonary dysplasia, remains high. Infants with bronchopulmonary dysplasia have larger and fewer alveoli, a lung pathology that can persist into adulthood. Although recent data point to a role for hypoxia-inducible factor-1α (HIF-1α) in mediating pulmonary angiogenesis and alveolarization, the cell-specific role of HIF-1α remains incompletely understood. Thus, we hypothesized that HIF-1α, in a distinct subset of mesenchymal cells, mediates postnatal alveolarization. To test the hypothesis, we generated mice with a cell-specific deletion of HIF-1α by crossing SM22α promoter-driven Cre mice with HIF-1αflox/flox mice (SM22α-HIF-1α-/-), determined SM-22α-expressing cell identity using single-cell RNA sequencing, and interrogated samples from preterm infants. Deletion of HIF-1α in SM22α-expressing cells had no effect on lung structure at day 3 of life. However, at 8 days, there were fewer and larger alveoli, a difference that persisted into adulthood. Microvascular density, elastin organization, and peripheral branching of the lung vasculature were decreased in SM22α-HIF-1α-/- mice, compared with control mice. Single-cell RNA sequencing demonstrated that three mesenchymal cell subtypes express SM22α: myofibroblasts, airway smooth muscle cells, and vascular smooth muscle cells. Pulmonary vascular smooth muscle cells from SM22α-HIF-1α-/- mice had decreased angiopoietin-2 expression and, in coculture experiments, a diminished capacity to promote angiogenesis that was rescued by angiopoietin-2. Angiopoietin-2 expression in tracheal aspirates of preterm infants was inversely correlated with overall mechanical ventilation time, a marker of disease severity. We conclude that SM22α-specific HIF-1α expression drives peripheral angiogenesis and alveolarization in the lung, perhaps by promoting angiopoietin-2 expression.


Subject(s)
Angiopoietin-2 , Bronchopulmonary Dysplasia , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Humans , Infant, Newborn , Mice , Angiopoietin-2/metabolism , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Infant, Premature , Lung/pathology
10.
Eur Respir J ; 61(6)2023 06.
Article in English | MEDLINE | ID: mdl-37024132

ABSTRACT

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Subject(s)
Pulmonary Arterial Hypertension , Mice , Animals , Pulmonary Arterial Hypertension/complications , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Hypoxia/metabolism
11.
Chest ; 163(3): e107-e110, 2023 03.
Article in English | MEDLINE | ID: mdl-36894263

ABSTRACT

Fat embolism syndrome describes a constellation of symptoms that follow an insult and that results in a triad of respiratory distress, neurologic symptoms, and petechia. The antecedent insult usually entails trauma or orthopedic procedure, most frequently involving long bone (especially the femur) and pelvic fractures. The underlying mechanism of injury remains unknown but entails biphasic vascular injury with vascular obstruction from fat emboli followed by an inflammatory response. We present an unusual case of a pediatric patient with acute onset of altered mental status, respiratory distress, hypoxemia, and subsequent retinal vascular occlusions after knee arthroscopy and lysis of adhesions. Diagnostic findings most supportive of the fat embolism syndrome included anemia, thrombocytopenia, pulmonary parenchymal, and cerebral pathologic findings on imaging studies. This case highlights the importance of fat embolism syndrome as a diagnostic consideration after an orthopedic procedure, even absent major trauma or long bone fracture.


Subject(s)
Embolism, Fat , Fractures, Bone , Respiratory Distress Syndrome , Humans , Child , Arthroscopy/adverse effects , Fractures, Bone/complications , Fractures, Bone/surgery , Lung/pathology , Dyspnea , Embolism, Fat/diagnosis , Embolism, Fat/etiology
12.
iScience ; 26(3): 106097, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36879800

ABSTRACT

At birth, the lung is still immature, heightening susceptibility to injury but enhancing regenerative capacity. Angiogenesis drives postnatal lung development. Therefore, we profiled the transcriptional ontogeny and sensitivity to injury of pulmonary endothelial cells (EC) during early postnatal life. Although subtype speciation was evident at birth, immature lung EC exhibited transcriptomes distinct from mature counterparts, which progressed dynamically over time. Gradual, temporal changes in aerocyte capillary EC (CAP2) contrasted with more marked alterations in general capillary EC (CAP1) phenotype, including distinct CAP1 present only in the early alveolar lung expressing Peg3, a paternally imprinted transcription factor. Hyperoxia, an injury that impairs angiogenesis induced both common and unique endothelial gene signatures, dysregulated capillary EC crosstalk, and suppressed CAP1 proliferation while stimulating venous EC proliferation. These data highlight the diversity, transcriptomic evolution, and pleiotropic responses to injury of immature lung EC, possessing broad implications for lung development and injury across the lifespan.

14.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L129-L141, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35762602

ABSTRACT

Though survival rates for preterm infants are improving, the incidence of chronic lung disease of infancy, or bronchopulmonary dysplasia (BPD), remains high. Histologically, BPD is characterized by larger and fewer alveoli. Hypoxia-inducible factors (HIFs) may be protective in the context of hyperoxia-induced lung injury, but the cell-specific effects of HIF expression in neonatal lung injury remain unknown. Thus, we sought to determine whether HIF stabilization in SM22α-expressing cells can limit hyperoxia-induced neonatal lung injury. We generated SM22α-specific HIF-1α-stabilized mice (SM22α-PHD1/2-/- mice) by cross-breeding SM22α-promotor-driven Cre recombinase mice with prolyl hydroxylase PHD1flox/flox and PHD2flox/flox mice. Neonatal mice were randomized to 21% O2 (normoxia) or 80% O2 (hyperoxia) exposure for 14 days. For the hyperoxia recovery studies, neonatal mice were recovered from normoxia for an additional 10 wk. SM22α-specific HIF-1α stabilization mitigated hyperoxia-induced lung injury and preserved microvessel density compared with control mice for both neonates and adults. In SM22α-PHD1/2-/- mice, pulmonary artery endothelial cells (PAECs) were more proliferative and pulmonary arteries expressed more collagen IV compared with control mice, even under hyperoxic conditions. Angiopoietin-2 (Ang2) mRNA expression in pulmonary artery smooth muscle cells (PASMC) was greater in SM22α-PHD1/2-/- compared with control mice in both normoxia and hyperoxia. Pulmonary endothelial cells (PECs) cocultured with PASMC isolated from SM22α-PHD1/2-/- mice formed more tubes and branches with greater tube length compared with PEC cocultured with PASMC isolated from SM22α-PHD1/2+/+ mice. Addition of Ang2 recombinant protein further augmented tube formation for both PHD1/2+/+ and PHD1/2-/- PASMC. Cell-specific deletion of PHD1 and 2 selectively increases HIF-1α expression in SM22α-expressing cells and protects neonatal lung development despite prolonged hyperoxia exposure. HIF stabilization in SM22α-expressing cells preserved endothelial cell proliferation, microvascular density, increased angiopoietin-2 expression, and lung structure, suggesting a role for cell-specific HIF-1α stabilization to prevent neonatal lung injury.


Subject(s)
Hyperoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Injury , Angiopoietin-2/metabolism , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/pathology , Endothelial Cells/metabolism , Humans , Hyperoxia/metabolism , Hyperoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Infant, Newborn , Infant, Premature , Lung/metabolism , Lung Injury/etiology , Lung Injury/metabolism , Lung Injury/prevention & control , Mice
15.
PLoS One ; 17(3): e0266173, 2022.
Article in English | MEDLINE | ID: mdl-35353851

ABSTRACT

Respiratory failure complicates most critically ill patients with COVID-19 and is characterized by heterogeneous pulmonary parenchymal involvement, profound hypoxemia and pulmonary vascular injury. The high incidence of COVID-19 related respiratory failure has exposed critical shortages in the supply of mechanical ventilators, and providers with the necessary skills to treat. Traditional mass-produced ventilators rely on an internal compressor and mixer to moderate and control the gas mixture delivered to a patient. However, the current emergency has energized the pursuit of alternative designs, enabling greater flexibility in supply chain, manufacturing, storage, and maintenance considerations. To achieve this, we hypothesized that using the medical gasses and flow interruption strategy would allow for a high performance, low cost, functional ventilator. A low-cost ventilator designed and built-in accordance with the Emergency Use guidance from the US Food and Drug Administration (FDA) is presented wherein pressurized medical grade gases enter the ventilator and time limited flow interruption determines the ventilator rate and tidal volume. This simple strategy obviates the need for many components needed in traditional ventilators, thereby dramatically shortening the time from storage to clinical deployment, increasing reliability, while still providing life-saving ventilatory support. The overall design philosophy and its applicability in this new crisis is described, followed by both bench top and animal testing results used to confirm the precision, safety and reliability of this low cost and novel approach to mechanical ventilation. The ventilator meets and exceeds the critical requirements included in the FDA emergency use guidelines. The ventilator has received emergency use authorization from the FDA.


Subject(s)
COVID-19 , Respiratory Insufficiency , Animals , COVID-19/therapy , Humans , Reproducibility of Results , Respiratory Insufficiency/therapy , Ventilators, Mechanical
18.
Curr Opin Pediatr ; 33(3): 302-310, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33938476

ABSTRACT

PURPOSE OF REVIEW: Pediatric coronavirus disease 2019 (COVID-19) respiratory disease is a distinct entity from adult illness, most notable in its milder phenotype. This review summarizes the current knowledge of the clinical patterns, cellular pathophysiology, and epidemiology of COVID-19 respiratory disease in children with specific attention toward factors that account for the maturation-related differences in disease severity. RECENT FINDINGS: Over the past 14 months, knowledge of the clinical presentation and pathophysiology of COVID-19 pneumonia has rapidly expanded. The decreased disease severity of COVID-19 pneumonia in children was an early observation. Differences in the efficiency of viral cell entry and timing of immune recognition and response between children and adults remain at the center of ongoing research. SUMMARY: The clinical spectrum of COVID-19 respiratory disease in children is well defined. The age-related differences protecting children from severe disease and death remain incompletely understood.


Subject(s)
COVID-19 , Respiration Disorders , Respiratory Tract Diseases , Adult , Child , Humans , SARS-CoV-2 , Severity of Illness Index
19.
J Interpers Violence ; 36(7-8): 3903-3921, 2021 04.
Article in English | MEDLINE | ID: mdl-29862883

ABSTRACT

Intimate partner violence (IPV) has myriad negative health and economic consequences for women and families. We hypothesized that empowering women through a combination of formal business training, microfinance, and IPV support groups would decrease IPV and improve women's economic status. The study included adult female survivors of severe IPV. Women living in Korogocho received the intervention and women in Dandora served as a standard of care (SOC) group, but received the intervention at the end of the follow-up period. Women in the intervention groups (n = 82, SOC group, n = 81) received 8 weeks of business training, assistance creating a business plan, a small initial loan (about US$60), and weekly business and social support meetings. The two primary outcome measures included change in: (a) average daily profit margin, and (b) incidence of severe IPV. Exploratory analysis also looked at incidence of violence against children and women's self-efficacy. Average daily profit margin in the intervention group increased by 351 Kenyan Shillings (about US$3.5) daily (95% CI = [172, 485]). IPV directed against participating women decreased from a baseline of 2.1 to 0.26 incidents, a difference of 1.84 incidents (95% CI = [1.32, 2.36]). Violence against children in the household in the prior 3 months decreased from 1.1 to 0.55 incidents, a difference of 0.55 incidents (95% CI = [0.16, 1.03]). Finally, the intervention appears to have increased self-efficacy scores by 0.42 points (95% CIs 0.13, 0.71). In a low-resource urban environment, employing three complementary interventions resulted in higher daily profit margins and lower IPV in the intervention compared with the SOC group. These data support the notion that employing multiple interventions concomitantly might possess synergistic, beneficial effects, and hold promise to address profound poverty and interrupt the devastating cycle of IPV.


Subject(s)
Economic Status , Intimate Partner Violence , Adult , Child , Family Characteristics , Female , Humans , Intimate Partner Violence/prevention & control , Kenya , Self-Help Groups
20.
Acad Med ; 96(4): 512-515, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33369904

ABSTRACT

Physicians engaged in biomedical research are well positioned to directly focus the discovery process on human biology. However, the relative proportion of investigators engaged in both caring for patients and conducting research is decreasing. To address the dwindling numbers of physician-scientists nationally, the Burroughs Wellcome Fund created the Physician-Scientist Institutional Awards Program by dedicating 25 million dollars to new initiatives at 10 degree granting, accredited medical schools in North America, awarded on the basis of institutions' proposals. The perceived barriers to physician-scientist training, program initiatives, and commitment to training a diverse group of future researchers were articulated in each application. In all, the Burroughs Wellcome Fund review committee considered 136 distinct proposals from 83 medical schools, representing 54% of all accredited medical schools in North America. Barriers identified by more than one-third of the applicant institutions included the absence of both mentors and role models, student indebtedness, institutional cultures that valued clinical care delivery above the discovery process, limited prior relevant research experience, and structural barriers that limited scheduling flexibility during training. Awards were granted to institutions with programs designed to be sustainable and overcome critical, prospectively identified barriers to training and retention of physician-scientists. Potential solutions from the 10 funded programs were focused on different stages of the training experience. Though a determination about the relative success of each of the initiatives will take many years, careful consideration of the barriers identified and more general application of specific program component may be beneficial in increasing the numbers of physicians actively involved in biomedical research.


Subject(s)
Biomedical Research/education , Biomedical Research/trends , Career Choice , Education, Medical/trends , Physicians/trends , Research Personnel/education , Research Personnel/trends , Adult , Biomedical Research/statistics & numerical data , Education, Medical/statistics & numerical data , Female , Forecasting , Humans , Male , Middle Aged , North America , Physicians/statistics & numerical data , Research Personnel/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...