Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 71(10): 4337-4345, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36861492

ABSTRACT

Organosulfur compounds (OSCs) in coffee remain challenging to analyze by conventional gas chromatography (GC) due to their low concentrations amid coffee's complex matrix and susceptibility to chiral-odor influences. In this study, multidimensional GC (MDGC) methods were developed to profile OSCs in coffee. Conventional GC was compared to comprehensive GC (GC×GC) for untargeted OSC analysis in eight specialty coffees, and GC×GC was found to improve the fingerprinting of OSCs in coffee (50 vs 16 OSCs identified). Of the 50 OSCs, 2-methyltetrahydrothiophen-3-one (2-MTHT) was of high interest due to its chirality and known aroma contribution. Following that, a heart-cutting method for chiral GC (GC-GC) was developed, validated, and applied to the coffees. The mean enantiomer ratio of 2-MTHT was observed to be 1.56 (R/S) in brewed coffees. Overall, MDGC techniques allowed for more comprehensive analyses of coffee OSCs, from which (R)-2-MTHT was found to be the predominant enantiomer with the lower odor threshold.


Subject(s)
Coffee , Odorants , Coffee/chemistry , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Chromatography, Gas/methods
2.
Food Chem ; 388: 132971, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35462220

ABSTRACT

Coffee has attracted significant research interest owing to its complex volatile composition and aroma, which imparts a pleasant sensorial experience that remains challenging to analyse and interpret. This review summarises analytical challenges associated with coffee's volatile and matrix complexity, and recent developments in instrumental techniques to resolve them. The benefits of state-of-the-art analytical techniques applied to coffee volatile analysis from experimental design to sample preparation, separation, detection, and data analysis are evaluated. Complementary method selection coupled with progressive experimental design and data analysis are vital to unravel the increasing comprehensiveness of coffee volatile datasets. Considering this, analytical workflows for conventional, targeted, and untargeted coffee volatile analyses are thus proposed considering the trends towards sorptive extraction, multidimensional gas chromatography, and high-resolution mass spectrometry. In conclusion, no single analytical method addresses coffee's complexity in its entirely, and volatile analysis must be tailored to the key objectives and concerns of the analyst.


Subject(s)
Coffee , Volatile Organic Compounds , Coffee/chemistry , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry , Odorants/analysis , Volatile Organic Compounds/analysis
3.
Talanta ; 235: 122793, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517651

ABSTRACT

The flavour analysis of volatile compounds remains challenging not only because of their diversity in properties and dynamic range, but also due to the high background noise from food matrix constituents. To improve sensitivity and specificity for a multiclass range of compounds, a combination of solid phase micro-extraction (SPME) devices and low energy electron ionisation (LE-EI) was proposed for the analysis of 36 volatile compounds, using coffee as a model matrix. From a pre-evaluation of devices and extraction modes, the combined use of direct immersion-stir bar sorptive extraction and headspace-thin-film SPME (SBSE-TFSPME) was selected to increase compound recovery, and further optimised for extraction temperature (88 °C) and time (110 min). Furthermore, to complement sample preparation by improving method specificity, a LE-EI technique was developed by evaluating the effect of ionisation energy, source temperature, and emission current on the formation of the diagnostic molecular ions and their preservation. This LE-EI method (15 eV, 150 °C, 0.3 µA) was validated with SBSE-TFSPME as a complete workflow in coffee matrices, and was found to possess good repeatability (intra-day RSD: 1.6-7.3 %), intermediate precision (inter-day RSD: 4.1-12.2 %), and linearity (R2 > 0.98). Even for complex coffee samples, the method detection limit reached the pg/mL range (e.g. 2,4,5-trimethylthiazole was detected at 15 pg/mL). In conclusion, this study provided insights on the potential of SPME and LE-EI to improve the sensitivity and specificity of analysis for a range of volatile compounds from food and other complex matrices.


Subject(s)
Electrons , Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry , Sensitivity and Specificity , Taste
4.
Food Chem ; 337: 128023, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32920275

ABSTRACT

In this study, the effects of fungal fermentation on green canephora coffee beans were evaluated by observing the changes to selected non-volatile parameters before roasting, and subsequently the volatile profile after roasting. Solid-state fermentation (SSF) by Aspergillus spp. and Mucor spp. on green canephora coffee beans was shown to modulate the contents of free sugars, free amino acids and polyphenolic compounds such as caffeoylquinic acids (CQAs). Significant strain-specific differences were observed in the contents of aroma compounds after roasting. A significant increase in pyrazines was observed in the Aspergillus oryzae-fermented samples, while higher levels of furans were detected in the Mucor plumbeus-fermented samples. The present work shows that fungal fermentation of green canephora coffee beans is a potentially promising method for the modulation and improvement of coffee flavour and aroma.


Subject(s)
Aspergillus/metabolism , Coffea/metabolism , Fermentation , Volatile Organic Compounds/metabolism , Coffea/chemistry , Odorants/analysis , Seeds/chemistry , Volatile Organic Compounds/chemistry
5.
Food Chem ; 302: 125370, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31442699

ABSTRACT

Four Arabica coffees (Brazil, Colombia, Ethiopia, and Guatemala) yield highly variant odours, attesting to the complexities of coffee aroma that command advanced analytical tools. In this study, their volatiles were extracted using solvent-assisted flavour evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). Due to matrix complexity, some trace odourants were detected in SAFE extracts by aroma extract dilution analysis (AEDA) but remained difficult to quantify by gas chromatography-mass spectrometry (GC-MS). This prompted the application of low energy electron ionisation (EI) coupled with GC-quadrupole time-of-flight (GC-QTOF). Optimal low EI GC-QTOF parameters (EI energy: 15 eV, acquisition rate: 3 Hz) were applied to achieve improved molecular ion signal intensity and reproducibility (relative standard deviation < 10%) across five compounds, which resulted in good linearity (R2 ≥ 0.999) and lowered detection levels (e.g. 0.025 ±â€¯0.005 ng/mL for 4-hydroxy-5-methyl-3(2H)-furanone). Therefore, this method potentially improves the measurement of trace odourants in complex matrices by increasing specificity and sensitivity.


Subject(s)
Coffee/chemistry , Food Analysis/methods , Odorants/analysis , Volatile Organic Compounds/analysis , Adult , Brazil , Coffea/chemistry , Colombia , Ethiopia , Female , Food Analysis/statistics & numerical data , Gas Chromatography-Mass Spectrometry/methods , Guatemala , Humans , Male , Middle Aged , Olfactometry/methods , Plant Extracts/chemistry , Principal Component Analysis , Reproducibility of Results , Solid Phase Microextraction/methods , Taste , Volatile Organic Compounds/isolation & purification
6.
J Am Chem Soc ; 136(28): 9854-7, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24950057

ABSTRACT

Transient absorption spectroscopy on subpicosecond to second time scales is used to investigate photogenerated charge carrier recombination in Si-doped nanostructured hematite (α-Fe2O3) photoanodes as a function of applied bias. For unbiased hematite, this recombination exhibits a 50% decay time of ~6 ps, ~10(3) times faster than that of TiO2 under comparable conditions. Anodic bias significantly retards hematite recombination dynamics, and causes the appearance of electron trapping on ps-µs time scales. These ultrafast recombination dynamics, their retardation by applied bias, and the associated electron trapping are discussed in terms of their implications for efficient water oxidation.

7.
J Am Chem Soc ; 136(6): 2564-74, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24437340

ABSTRACT

The kinetic competition between electron-hole recombination and water oxidation is a key consideration for the development of efficient photoanodes for solar driven water splitting. In this study, we employed three complementary techniques, transient absorption spectroscopy (TAS), transient photocurrent spectroscopy (TPC), and electrochemical impedance spectroscopy (EIS), to address this issue for one of the most widely studied photoanode systems: nanostructured hematite thin films. For the first time, we show a quantitative agreement between all three techniques. In particular, all three methods show the presence of a recombination process on the 10 ms to 1 s time scale, with the time scale and yield of this loss process being dependent upon applied bias. From comparison of data between these techniques, we are able to assign this recombination phase to recombination of bulk hematite electrons with long-lived holes accumulated at the semiconductor/electrolyte interface. The data from all three techniques are shown to be consistent with a simple kinetic model based on competition between this, bias dependent, recombination pathway and water oxidation by these long-lived holes. Contrary to most existing models, this simple model does not require the consideration of surface states located energetically inside the band gap. These data suggest two distinct roles for the space charge layer developed at the semiconductor/electrolyte interface under anodic bias. Under modest anodic bias (just anodic of flatband), this space charge layer enables the spatial separation of initially generated electrons and holes following photon absorption, generating relatively long-lived holes (milliseconds) at the semiconductor surface. However, under such modest bias conditions, the energetic barrier generated by the space charge layer field is insufficient to prevent the subsequent recombination of these holes with electrons in the semiconductor bulk on a time scale faster than water oxidation. Preventing this back electron-hole recombination requires the application of stronger anodic bias, and is a key reason why the onset potential for photocurrent generation in hematite photoanodes is typically ~500 mV anodic of flat band and therefore needs to be accounted for in electrode design for PEC water splitting.

8.
Nat Mater ; 12(9): 842-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23832125

ABSTRACT

Charge transport in nanoparticle-based materials underlies many emerging energy-conversion technologies, yet assessing the impact of nanometre-scale structure on charge transport across micrometre-scale distances remains a challenge. Here we develop an approach for correlating the spatial distribution of crystalline and current-carrying domains in entire nanoparticle aggregates. We apply this approach to nanoparticle-based α-Fe2O3 electrodes that are of interest in solar-to-hydrogen energy conversion. In correlating structure and charge transport with nanometre resolution across micrometre-scale distances, we have identified the existence of champion nanoparticle aggregates that are most responsible for the high photoelectrochemical activity of the present electrodes. Indeed, when electrodes are fabricated with a high proportion of these champion nanostructures, the electrodes achieve the highest photocurrent of any metal oxide photoanode for photoelectrochemical water-splitting under 100 mW cm(-2) air mass 1.5 global sunlight.


Subject(s)
Models, Theoretical , Nanostructures/chemistry , Electrodes , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Photochemical Processes , Solar Energy , Surface Properties , Water/chemistry
9.
Nano Lett ; 12(10): 5431-5, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22974097

ABSTRACT

Many candidate materials for photoelectrochemical water splitting will be better employed by decoupling optical absorption from carrier transport. A promising strategy is to use multiple thin absorber layers supported on transparent, conducting materials; however there are limited such materials that are both pH stable and depositable on arbitrary high surface area substrates. Here we present the first 3D porous niobium doped tin oxide (NTO) electrodes fabricated by atomic layer deposition. After high temperature crystallization the NTO is transparent, conductive, and stable over a wide range of pH. The optimized films have high electrical conductivity up to 37 S/cm concomitant with a low optical attenuation coefficient of 0.99 µm(-1) at 550 nm. NTO was deposited onto high surface area templates that were subsequently coated with hematite Fe(2)O(3) for the photoelectrochemical water splitting. This approach enabled near-record water splitting photocurrents for hematite electrodes employing a host-guest strategy.

10.
Faraday Discuss ; 155: 223-32; discussion 297-308, 2012.
Article in English | MEDLINE | ID: mdl-22470976

ABSTRACT

Hematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.2 V. The benefit from Ga2O3 underlayers was most pronounced when the thickness of the underlayer was approximately 2 nm. Thinner underlayers did not work effectively as a template presumably because of insufficient crystallinity of the underlayer, while thicker ones diminished the PEC performance of hematite because the underlayer prevented electron injection from hematite to a conductive substrate due to the large conduction band offset. The enhancement of PEC performance by a Ga2O3 underlayer was more significant for thinner hematite layers owing to greater margins for improving the crystallinity of ultrathin hematite. It was confirmed that a Ga2O3 underlayer was applicable to a rough conducting substrate loaded with Sb-doped SnO2 nanoparticles, improving the photocurrent by a factor of 1.4. Accordingly, a Ga2O3 underlayer could push forward the development of host-guest-type nanocomposites consisting of highly-rough substrates and extremely-thin hematite absorbers.

SELECTION OF CITATIONS
SEARCH DETAIL
...