Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 12(1): e0006180, 2018 01.
Article in English | MEDLINE | ID: mdl-29357372

ABSTRACT

Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi.


Subject(s)
Antiprotozoal Agents/metabolism , Chagas Disease/parasitology , Enzyme Inhibitors/metabolism , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/drug therapy , Disease Models, Animal , Mice , Niacinamide/metabolism , Quinolones/metabolism , Spermine/analogs & derivatives , Spermine/metabolism , Treatment Outcome
2.
IUBMB Life ; 70(1): 9-22, 2018 01.
Article in English | MEDLINE | ID: mdl-29210173

ABSTRACT

Phenotypic assays are becoming increasingly more common among drug discovery practices, expanding drug target diversity as lead compounds identified through such screens are not limited to known targets. While increasing diversity is beneficial to the drug discovery process and the fight against disease, the unknown modes of action of new lead compounds can hamper drug discovery as, in most cases, the process of lead compound optimization is made difficult due to the unknown nature of the target; blindly changing substituents can prove fruitless due to the inexhaustible number of potential combinations, and it is therefore desirable to rapidly identify the targets of lead compounds developed through phenotypic screening. In addition, leads identified through target-based screening often have off-target effects that contribute towards drug toxicity, and by identifying those secondary targets, the drugs can be improved. However, the identification of a leads mode of action is far from trivial and now represents a major bottleneck in the drug discovery pipeline. This review looks at some of the recent developments in the identification of drug modes of action, focusing on phenotype-based methods using metabolomics, proteomics, transcriptomics, and genomics to detect changes in phenotype in response to the presence of the drug, and affinity-based methods using modified/unmodified drug as bait to capture and identify targets. © 2017 IUBMB Life, 70(1):9-22, 2018.


Subject(s)
Drug Design , Drug Discovery , Genomics/methods , High-Throughput Screening Assays , Molecular Targeted Therapy/methods , Proteome/metabolism , Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Genomics/instrumentation , Humans , Metabolomics , Protein Binding , Proteome/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods
3.
Curr Med Chem ; 22(37): 4293-312, 2015.
Article in English | MEDLINE | ID: mdl-26477622

ABSTRACT

Human American trypanosomiasis, commonly called Chagas disease, is one of the most neglected illnesses in the world and remains one of the most prevalent chronic infectious diseases of Latin America with thousands of new cases every year. The only treatments available have been introduced five decades ago. They have serious, undesirable side effects and disputed benefits in the chronic stage of the disease - a characteristic and debilitating cardiomyopathy and/or megavisceras. Several laboratories have therefore focused their efforts in finding better drugs. Although recent years have brought new clinical trials, these are few and lack diversity in terms of drug mechanism of action, thus resulting in a weak drug discovery pipeline. This fragility has been recently exposed by the failure of two candidates; posaconazole and E1224, to sterilely cure patients in phase 2 clinical trials. Such setbacks highlight the need for continuous, novel and high quality drug discovery and development efforts to discover better and safer treatments. In this article we will review past and current findings on drug discovery for Trypanosoma cruzi made by academic research groups, industry and other research organizations over the last half century. We also analyze the current research landscape that is now better placed than ever to deliver alternative treatments for Chagas disease in the near future.


Subject(s)
Antiprotozoal Agents/therapeutic use , Chagas Disease/drug therapy , Drug Discovery/trends , Humans , Trypanosoma cruzi/physiology
SELECTION OF CITATIONS
SEARCH DETAIL