Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 235: 112550, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049383

ABSTRACT

Photoperiod can profoundly affect the physiology of teleost fish, including accelerated growth here defined as "fast growth phenotypes". However, molecular regulatory networks (MRNs) and biological processes being affected by continuous illumination and which allow some teleost species evident plasticity to thrive under this condition are not yet clear. Therefore, to provide a broad perspective of such mechanisms, Chirostoma estor fish were raised and sampled for growth under a simulated control (LD) 12 h Light: 12 h Dark or a continuous illumination (LL) 24 h Light: 0 h Dark since fertilization. The experiment lasted 12 weeks after hatching (wah), the time at which fish were sampled for growth, length, and whole-body cortisol levels. Additionally, 3 heads of fish from each treatment were used to perform a de novo transcriptome analysis using Next-Generation Sequencing. Fish in LL developed the fast growth phenotype with significant differences visible at 4 wah and gained 66% more mass by 12 wah than LD fish. Cortisol levels under LL were below basal levels at all times compared to fish in LD, suggesting circadian dysregulation effects. A strong effect of LL was observed in samples with a generalized down-regulation of genes except for Reactive Oxygen Species responses, genome stability, and growth biological processes. To our knowledge, this work is the first study using a transcriptomic approach to understand environmentally sensitive MRNs that mediate phenotypic plasticity in fish submitted to continuous illumination. This study gives new insights into the plasticity mechanisms of teleost fish under constant illumination.


Subject(s)
Biological Phenomena , Circadian Rhythm , Animals , Circadian Rhythm/physiology , Fishes/genetics , Hydrocortisone , Light , Phenotype , Photoperiod , Reactive Oxygen Species , Transcriptome
2.
J Fish Biol ; 93(2): 229-237, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29931822

ABSTRACT

The present study evaluates the influence of continuous light on phenotypic sex ratios in Chirostoma estor, a temperature sex determination animal model. Relative gene expression levels of 5 day old larvae were performed on two early gonad differentiation genes (sox9 and foxl2), two stress axis activation genes (gcr1 and crf) and four reactive oxygen species (ROS) antagonist effector genes (sod2, ucp2, gsr and cat). Two light treatments were applied from fertilization; control (12L:12D) simulated natural photoperiod and a continuous illumination photoperiod. By the end of the trial (12 weeks after hatching), differentiated and normal gonads were clearly identifiable in both treatments by histological observations. Regarding sex ratio, 73% of phenotypic males were found in continuous illumination compared with 40% in controls. Consistently, the sox9 gene (involved in early testis differentiation) showed an over expression in 64% of the individual larvae analysed compared with foxl2 (ovarian differentiation) suggesting a masculinization tendency in continuous illumination. On the other hand, only 36% of individuals showed the same tendency in the control treatment consistent with phenotypic sex ratios found under normal culture conditions. Relative gene expression results did not show significant difference in sod2, ucp2 and gcr1 levels, but cat, gsr and crf showed significantly higher expression levels in the continuous illumination treatment suggesting that both, the stress axis and ROS response mechanisms were activated at this time. This study suggests, a link between continuous light, oxidative stress and environmental sex determination in vertebrates. However, further research is necessary to describe this possible upstream mechanism that may drive some aspects of sexual plasticity in vertebrates.


Subject(s)
Fishes/growth & development , Oxidative Stress , Photoperiod , Sex Determination Processes , Sex Differentiation , Animals , Female , Fishes/genetics , Fishes/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Gonads/growth & development , Lighting , Male , Ovary/growth & development , Sex Ratio , Temperature , Testis/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...