Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
NPJ Vaccines ; 6(1): 34, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33707443

ABSTRACT

An effective vaccine to prevent HIV transmission has not yet been achieved. Modulation of the microbiome via probiotic therapy has been suggested to result in enhanced mucosal immunity. Here, we evaluated whether probiotic therapy could improve the immunogenicity and protective efficacy of SIV/HIV vaccination. Rhesus macaques were co-immunized with an SIV/HIV DNA vaccine via particle-mediated epidermal delivery and an HIV protein vaccine administered intramuscularly with Adjuplex™ adjuvant, while receiving daily oral Visbiome® probiotics. Probiotic therapy alone led to reduced frequencies of colonic CCR5+ and CCR6+ CD4+ T cells. Probiotics with SIV/HIV vaccination led to similar reductions in colonic CCR5+ CD4+ T cell frequencies. SIV/HIV-specific T cell and antibody responses were readily detected in the periphery of vaccinated animals but were not enhanced with probiotic treatment. Combination probiotics and vaccination did not impact rectal SIV/HIV target populations or reduce the rate of heterologous SHIV acquisition during the intrarectal challenge. Finally, post-infection viral kinetics were similar between all groups. Thus, although probiotics were well-tolerated when administered with SIV/HIV vaccination, vaccine-specific responses were not significantly enhanced. Additional work will be necessary to develop more effective strategies of microbiome modulation in order to enhance mucosal vaccine immunogenicity and improve protective immune responses.

2.
AIDS Res Hum Retroviruses ; 37(7): 510-522, 2021 07.
Article in English | MEDLINE | ID: mdl-33446027

ABSTRACT

In Sub-Saharan Africa, young women 15-24 years of age account for nearly 30% of all new HIV infections, however, biological and epidemiological factors underlying this disproportionate infection rate are unclear. In this study, we assessed biological contributors of SIV/HIV susceptibility in the female genital tract (FGT) using adolescent (n = 9) and adult (n = 10) pigtail macaques (PTMs) with weekly low-dose intravaginal challenges of SIV. Immunological variables were captured in vaginal tissue of PTMs by flow cytometry and cytokine assays. Vaginal biopsies were profiled by proteomic analysis. The vaginal microbiome was assessed by 16S rRNA sequencing. We were powered to detect a 2.2-fold increase in infection rates between age groups, however, we identified no significant differences in susceptibility. This model cannot capture epidemiological factors or may not best represent biological differences of HIV susceptibility. No immune cell subsets measured were significantly different between groups. Inflammatory marker MCP-1 was significantly higher (adj p = .02), and sCD40L trended higher (adj p = .06) in vaginal cytobrushes of adults. Proteomic analysis of vaginal biopsies showed no significant (adj p < .05) protein or pathway differences between groups. Vaginal microbiomes were not significantly different between groups. No differences were observed between age groups in this PTM model, however, these animals may not reflect biological factors contributing to HIV risk such as those found in their human counterparts. This model is therefore not appropriate to explore human adolescent differences in HIV risk. Young women remain a key population at risk for HIV infection, and there is still a need for comprehensive assessment and intervention strategies for epidemic control of this uniquely vulnerable population.


Subject(s)
HIV Infections , Microbiota , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Adolescent , Adult , Animals , Female , Genitalia, Female , Humans , Macaca nemestrina , Proteomics , RNA, Ribosomal, 16S/genetics , Simian Immunodeficiency Virus/genetics
4.
Mucosal Immunol ; 13(3): 471-480, 2020 05.
Article in English | MEDLINE | ID: mdl-31797911

ABSTRACT

The diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short-chain fatty acids (SCFAs) and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics: enrofloxacin, cephalexin, paromomycin, and clindamycin, in healthy female rhesus macaques. All antibiotics disrupted the microbiome, including reduced abundances of fermentative bacteria and increased abundances of potentially pathogenic bacteria, including Enterobacteriaceae in the stool, and decreased Helicobacteraceae in the colon. This was associated with decreased SCFAs, indicating altered bacterial metabolism. Importantly, antibiotic use also substantially altered local immune responses, including increased neutrophils and Th17 cells in the colon. Furthermore, we observed increased soluble CD14 in plasma, indicating microbial translocation. These data provide a longitudinal evaluation of antibiotic-induced changes to the composition and function of colonic bacterial communities associated with specific alterations in mucosal and systemic immunity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colon , Gastrointestinal Microbiome/drug effects , Immunity, Mucosal/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Bacteria , Biodiversity , Biomarkers , Drug Administration Schedule , Drug Monitoring , Fatty Acids, Volatile/metabolism , Feces/cytology , Feces/microbiology , Gas Chromatography-Mass Spectrometry , Immunophenotyping , Intestinal Mucosa/pathology , Macaca mulatta , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tissue Distribution
5.
J Virol ; 93(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31217249

ABSTRACT

Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virus in vitro or in vivo Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+ and CCR6+ CD4+ T cells in mucosal tissues, decreases in CD4+ T cells producing Th17 cell-associated cytokines, CD8+ T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCE The development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing for in vivo testing of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.


Subject(s)
Genetic Engineering/methods , HIV/immunology , Simian Immunodeficiency Virus/immunology , Animals , Disease Models, Animal , HIV Infections/virology , HIV-1/immunology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology , Macaca mulatta/virology , Models, Biological , Simian Acquired Immunodeficiency Syndrome/virology , Viral Load/immunology , Virus Replication/physiology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
6.
PLoS Pathog ; 15(4): e1007672, 2019 04.
Article in English | MEDLINE | ID: mdl-30973942

ABSTRACT

Gastrointestinal (GI) mucosal dysfunction predicts and likely contributes to non-infectious comorbidities and mortality in HIV infection and persists despite antiretroviral therapy. However, the mechanisms underlying this dysfunction remain incompletely understood. Neutrophils are important for containment of pathogens but can also contribute to tissue damage due to their release of reactive oxygen species and other potentially harmful effector molecules. Here we used a flow cytometry approach to investigate increased neutrophil lifespan as a mechanism for GI neutrophil accumulation in chronic, treated HIV infection and a potential role for gastrointestinal dysbiosis. We report that increased neutrophil survival contributes to neutrophil accumulation in colorectal biopsy tissue, thus implicating neutrophil lifespan as a new therapeutic target for mucosal inflammation in HIV infection. Additionally, we characterized the intestinal microbiome of colorectal biopsies using 16S rRNA sequencing. We found that a reduced Lactobacillus: Prevotella ratio associated with neutrophil survival, suggesting that intestinal bacteria may contribute to GI neutrophil accumulation in treated HIV infection. Finally, we provide evidence that Lactobacillus species uniquely decrease neutrophil survival and neutrophil frequency in vitro, which could have important therapeutic implications for reducing neutrophil-driven inflammation in HIV and other chronic inflammatory conditions.


Subject(s)
Colon/immunology , Gastrointestinal Microbiome/immunology , HIV Infections/immunology , HIV-1/immunology , Inflammation/immunology , Neutrophils/immunology , Rectum/immunology , Colon/microbiology , Colon/pathology , Female , HIV Infections/virology , Humans , Inflammation/pathology , Male , Middle Aged , Neutrophils/cytology , Rectum/microbiology , Rectum/pathology
7.
Clin Infect Dis ; 66(12): 1872-1882, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29471387

ABSTRACT

Background: Cannabis is a widely used drug in the United States, and the frequency of cannabis use in the human immunodeficiency virus (HIV)-infected population is disproportionately high. Previous human and macaque studies suggest that cannabis may have an impact on plasma viral load; however, the relationship between cannabis use and HIV-associated systemic inflammation and immune activation has not been well defined. Methods: The impact of cannabis use on peripheral immune cell frequency, activation, and function was assessed in 198 HIV-infected, antiretroviral-treated individuals by flow cytometry. Individuals were categorized into heavy, medium, or occasional cannabis users or noncannabis users based on the amount of the cannabis metabolite 11-nor-carboxy-tetrahydrocannabinol (THC-COOH) detected in plasma by mass spectrometry. Results: Heavy cannabis users had decreased frequencies of human leukocyte antigen (HLA)-DR+CD38+CD4+ and CD8+ T-cell frequencies, compared to frequencies of these cells in non-cannabis-using individuals. Heavy cannabis users had decreased frequencies of intermediate and nonclassical monocyte subsets, as well as decreased frequencies of interleukin 23- and tumor necrosis factor-α-producing antigen-presenting cells. Conclusions: While the clinical implications are unclear, our findings suggest that cannabis use is associated with a potentially beneficial reduction in systemic inflammation and immune activation in the context of antiretroviral-treated HIV infection.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Immunity, Innate/drug effects , Lymphocyte Activation/drug effects , Marijuana Abuse/immunology , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Dronabinol/analogs & derivatives , Dronabinol/blood , Female , Flow Cytometry , Humans , Inflammation , Male , Middle Aged , Monocytes/drug effects , Viral Load/drug effects
8.
Protein Sci ; 26(3): 475-483, 2017 03.
Article in English | MEDLINE | ID: mdl-27977889

ABSTRACT

The tumor-suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N-terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain-containing proteins. RING domains bind and activate E2 ubiquitin-conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer-associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1.


Subject(s)
BRCA1 Protein/chemistry , Protein Multimerization , Tumor Suppressor Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Ubiquitination , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Humans , Protein Domains , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...