Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6322, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36280685

ABSTRACT

The ribosome is a macromolecular machine that catalyzes the sequence-defined polymerization of L-α-amino acids into polypeptides. The catalysis of peptide bond formation between amino acid substrates is based on entropy trapping, wherein the adjacency of transfer RNA (tRNA)-coupled acyl bonds in the P-site and the α-amino groups in the A-site aligns the substrates for coupling. The plasticity of this catalytic mechanism has been observed in both remnants of the evolution of the genetic code and modern efforts to reprogram the genetic code (e.g., ribosomal incorporation of non-canonical amino acids, ribosomal ester formation). However, the limits of ribosome-mediated polymerization are underexplored. Here, rather than peptide bonds, we demonstrate ribosome-mediated polymerization of pyridazinone bonds via a cyclocondensation reaction between activated γ-keto and α-hydrazino ester monomers. In addition, we demonstrate the ribosome-catalyzed synthesis of peptide-hybrid oligomers composed of multiple sequence-defined alternating pyridazinone linkages. Our results highlight the plasticity of the ribosome's ancient bond-formation mechanism, expand the range of non-canonical polymeric backbones that can be synthesized by the ribosome, and open the door to new applications in synthetic biology.


Subject(s)
RNA, Transfer , Ribosomes , Ribosomes/metabolism , RNA, Transfer/metabolism , Genetic Code , Peptides/chemistry , Amino Acids/metabolism , Protein Biosynthesis
2.
Cell Chem Biol ; 29(7): 1071-1112, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35413283

ABSTRACT

A critical step in repurposing the cellular translation machinery for the synthesis of polymeric products is the acylation of transfer RNA (tRNA) with unnatural monomers. Toward this goal, flexizymes, ribozymes capable of aminoacylation, have emerged as a uniquely adept tool for charging tRNA with ever increasingly diverse substrates. In this review, we present a library of monomer substrates that have been tested for tRNA acylation with the flexizyme system. From this mile-high view, we provide insights for understanding the chemical factors that influence flexizyme-mediated tRNA acylation. We conclude that flexizymes are primitive esterification catalysts that display a modest binding affinity to the monomer's aromatic recognition element. Together, these robust, yet flexible, flexizyme systems provide researchers with unprecedented access for preparing unnatural acyl-tRNA and the opportunity to repurpose the translation machinery for the synthesis of novel biologically derived structures beyond native proteins and peptides.


Subject(s)
RNA, Catalytic , Transfer RNA Aminoacylation , Acylation , Catalysis , Peptides/metabolism , RNA, Catalytic/chemistry , RNA, Transfer/metabolism
3.
Cell Rep Phys Sci ; 2(4)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-34755143

ABSTRACT

Molecular encoding in sequence-defined polymers shows promise as a new paradigm for data storage. Here, we report what is, to our knowledge, the first use of self-immolative oligourethanes for storing and reading encoded information. As a proof of principle, we describe how a text passage from Jane Austen's Mansfield Park was encoded in sequence-defined oligourethanes and reconstructed via self-immolative sequencing. We develop Mol.E-coder, a software tool that uses a Huffman encoding scheme to convert the character table to hexadecimal. The oligourethanes are then generated by a high-throughput parallel synthesis. Sequencing of the oligourethanes by self-immolation is done concurrently in a parallel fashion, and the liquid chromatography-mass spectrometry (LC-MS) information decoded by our Mol.E-decoder software. The passage is capable of being reproduced wholly intact by a third-party, without any purifications or the use of tandem MS (MS/MS), despite multiple rounds of compression, encoding, and synthesis.

4.
J Am Chem Soc ; 142(6): 2744-2749, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31986251

ABSTRACT

Sequence-defined polymers show promise for biomimetics, self-assembly, catalysis, and information storage, wherein the primary structure begets complex chemical processes. Here we report the solution-phase and the high-yielding solid-phase syntheses of discrete oligourethanes and methods for their self-immolative sequencing, resulting in rapid and robust characterization of this class of oligomers and polymers, without the use of MS/MS. Crucial to the sequencing is the inherent reactivity of the terminal alcohol to "unzip" the oligomers, in a controlled and iterative fashion, releasing each monomer as a 2-oxazolidinone. By monitoring the self-immolation reaction via LC/MS, an applied algorithm rapidly produces the sequence of the oligourethane. Not only does this process provide characterization of structurally complex molecules, it works as a reader of molecular information.


Subject(s)
Polymers/chemistry , Urethane/chemistry , Algorithms , Chromatography, Liquid/methods , Molecular Structure , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL