Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Plant Biol (Stuttg) ; 25(3): 379-395, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36748909

ABSTRACT

Climate change and abiotic stress factors are key players in crop losses worldwide. Among which, extreme temperatures (heat and cold) disturb plant growth and development, reduce productivity and, in severe cases, lead to plant death. Plants have developed numerous strategies to mitigate the detrimental impact of temperature stress. Exposure to stress leads to the accumulation of various metabolites, e.g. sugars, sugar alcohols, organic acids and amino acids. Plants accumulate the amino acid 'proline' in response to several abiotic stresses, including temperature stress. Proline abundance may result from de novo synthesis, hydrolysis of proteins, reduced utilization or degradation. Proline also leads to stress tolerance by maintaining the osmotic balance (still controversial), cell turgidity and indirectly modulating metabolism of reactive oxygen species. Furthermore, the crosstalk of proline with other osmoprotectants and signalling molecules, e.g. glycine betaine, abscisic acid, nitric oxide, hydrogen sulfide, soluble sugars, helps to strengthen protective mechanisms in stressful environments. Development of less temperature-responsive cultivars can be achieved by manipulating the biosynthesis of proline through genetic engineering. This review presents an overview of plant responses to extreme temperatures and an outline of proline metabolism under such temperatures. The exogenous application of proline as a protective molecule under extreme temperatures is also presented. Proline crosstalk and interaction with other molecules is also discussed. Finally, the potential of genetic engineering of proline-related genes is explained to develop 'temperature-smart' plants. In short, exogenous application of proline and genetic engineering of proline genes promise ways forward for developing 'temperature-smart' future crop plants.


Subject(s)
Hot Temperature , Proline , Temperature , Proline/metabolism , Plants/metabolism , Stress, Physiological/physiology , Sugars/metabolism
2.
Plant Biol (Stuttg) ; 24(4): 540-558, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34870354

ABSTRACT

As a result of climate change, abiotic stresses are the most common cause of crop losses worldwide. Abiotic stresses significantly impair plants' physiological, biochemical, molecular and cellular mechanisms, limiting crop productivity under adverse climate conditions. However, plants can implement essential mechanisms against abiotic stressors to maintain their growth and persistence under such stressful environments. In nature, plants have developed several adaptations and defence mechanisms to mitigate abiotic stress. Moreover, recent research has revealed that signalling molecules like hydrogen sulfide (H2 S) play a crucial role in mitigating the adverse effects of environmental stresses in plants by implementing several physiological and biochemical mechanisms. Mainly, H2 S helps to implement antioxidant defence systems, and interacts with other molecules like nitric oxide (NO), reactive oxygen species (ROS), phytohormones, etc. These molecules are well-known as the key players that moderate the adverse effects of abiotic stresses. Currently, little progress has been made in understanding the molecular basis of the protective role of H2 S; however, it is imperative to understand the molecular basis using the state-of-the-art CRISPR-Cas gene-editing tool. Subsequently, genetic engineering could provide a promising approach to unravelling the molecular basis of stress tolerance mediated by exogenous/endogenous H2 S. Here, we review recent advances in understanding the beneficial roles of H2 S in conferring multiple abiotic stress tolerance in plants. Further, we also discuss the interaction and crosstalk between H2 S and other signal molecules; as well as highlighting some genetic engineering-based current and future directions.


Subject(s)
Hydrogen Sulfide , Nitric Oxide , Plant Physiological Phenomena , Plants/genetics , Stress, Physiological/physiology
3.
Plant Biol (Stuttg) ; 23 Suppl 1: 39-49, 2021 May.
Article in English | MEDLINE | ID: mdl-33590621

ABSTRACT

The free radical nitric oxide (NO) and the phenolic phytohormone salicylic acid (SA) are signal molecules which exert key functions at biochemical and physiological levels. Abiotic stresses, especially in early plant development, impose the biggest threats to agricultural systems and crop yield. These stresses impair plant growth and subsequently cause a reduction in root development, affecting nutrient uptake and crop productivity. The molecules NO and SA have been identified as robust tools for efficiently mitigating the negative effects of abiotic stress in plants. SA is engaged in an array of tasks under adverse environmental situations. The function of NO depends on its cellular concentration; at a low level, it acts as a signal molecule, while at a high level, it triggers nitro-oxidative stress. The crosstalk between NO and SA involving different signalling molecules and regulatory factors modulate plant function during stressful situations. Crosstalk between these two signalling molecules induces plant tolerance to abiotic stress and needs further investigation. This review aims to highlight signalling aspects of NO and SA in higher plants and critically discusses the roles of these two molecules in alleviating abiotic stress.


Subject(s)
Plant Development , Salicylic Acid , Nitric Oxide , Plant Physiological Phenomena , Stress, Physiological
4.
Plant Physiol Biochem ; 148: 312-323, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32000108

ABSTRACT

In plant cells, cadmium (Cd) and arsenic (As) exert toxicity mainly by inducing oxidative stress through an imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and their detoxification. Nitric oxide (NO) is a RNS acting as signalling molecule coordinating plant development and stress responses, but also as oxidative stress inducer, depending on its cellular concentration. Peroxisomes are versatile organelles involved in plant metabolism and signalling, with a role in cellular redox balance thanks to their antioxidant enzymes, and their RNS (mainly NO) and ROS. This study analysed Cd or As effects on peroxisomes, and NO production and distribution in the root system, including primary root (PR) and lateral roots (LRs). Arabidopsis thaliana wild-type and transgenic plants enabling peroxisomes to be visualized in vivo, through the expression of the 35S-cyan fluorescent protein fused to the peroxisomal targeting signal1 (PTS1) were used. Peroxisomal enzymatic activities including the antioxidant catalase, the H2O2-generating glycolate oxidase, and the hydroxypyruvate reductase, and root system morphology were also evaluated under Cd/As exposure. Results showed that Cd and As differently modulate these activities, however, catalase activity was inhibited by both. Moreover, Arabidopsis root system was altered, with the pollutants differently affecting PR growth, but similarly enhancing LR formation. Only in the PR apex, and not in LR one, Cd more than As caused significant changes in peroxisome distribution, size, and in peroxisomal NO content. By contrast, neither pollutant caused significant changes in peroxisomes size and peroxisomal NO content in the LR apex.


Subject(s)
Arabidopsis , Arsenic , Cadmium , Peroxisomes , Plant Roots , Arabidopsis/chemistry , Arabidopsis/drug effects , Arabidopsis/enzymology , Arsenic/toxicity , Cadmium/toxicity , Enzyme Activation/drug effects , Nitric Oxide/analysis , Peroxisomes/drug effects , Plant Roots/drug effects
5.
Nitric Oxide ; 93: 53-70, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31541734

ABSTRACT

In this year there is the 40th anniversary of the first publication of plant nitric oxide (NO) emission by Lowell Klepper. In the decades since then numerous milestone discoveries have revealed that NO is a multifunctional molecule in plant cells regulating both plant development and stress responses. Apropos of the anniversary, these authors aim to review and discuss the developments of past concepts in plant NO research related to NO metabolism, NO signaling, NO's action in plant growth and in stress responses and NO's interactions with other reactive compounds. Despite the long-lasting research efforts and the accumulating experimental evidences numerous questions are still needed to be answered, thus future challenges and research directions have also been drawn up.


Subject(s)
Nitric Oxide/metabolism , Plant Physiological Phenomena , Plants/metabolism , Nitrate Reductase/physiology , Nitric Oxide Synthase/physiology , Nitrosative Stress/physiology , Plant Development , Reproduction/physiology , Signal Transduction/physiology , Symbiosis/physiology
6.
Plant Biol (Stuttg) ; 20(5): 805-807, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29869825

ABSTRACT

Fruit ripening is a complex physiological process involving significant external and internal modifications. Classic edible fleshy fruits have been classified as climacteric or non-climacteric according to their dependence on the phyto hormone ethylene; however, data have increasingly confirmed the involvement of the free radical nitric oxide (NO) in this process. Moreover, the exogenous application of NO demonstrates its beneficial effects on fruit quality.


Subject(s)
Fruit/growth & development , Nitric Oxide/metabolism , Plant Growth Regulators/metabolism , Capsicum/growth & development , Capsicum/metabolism , Fruit/metabolism
7.
Environ Sci Pollut Res Int ; 20(4): 2150-61, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23338995

ABSTRACT

Lead (Pb) is naturally occurring element whose distribution in the environment occurs because of its extensive use in paints, petrol, explosives, sludge, and industrial wastes. In plants, Pb uptake and translocation occurs, causing toxic effects resulting in decrease of biomass production. Commonly plants may prevent the toxic effect of heavy metals by induction of various celular mechanisms such as adsorption to the cell wall, compartmentation in vacuoles, enhancement of the active efflux, or induction of higher levels of metal chelates like a protein complex (metallothioneins and phytochelatins), organic (citrates), and inorganic (sulphides) complexes. Phyotochelains (PC) are synthesized from glutathione (GSH) and such synthesis is due to transpeptidation of γ-glutamyl cysteinyl dipeptides from GSH by the action of a constitutively present enzyme, PC synthase. Phytochelatin binds to Pb ions leading to sequestration of Pb ions in plants and thus serves as an important component of the detoxification mechanism in plants. At cellular level, Pb induces accumulation of reactive oxygen species (ROS), as a result of imbalanced ROS production and ROS scavenging processes by imposing oxidative stress. ROS include superoxide radical (O2(.-)), hydrogen peroxide (H2O2) and hydroxyl radical ((·)OH), which are necessary for the correct functioning of plants; however, in excess they caused damage to biomolecules, such as membrane lipids, proteins, and nucleic acids among others. To limit the detrimental impact of Pb, efficient strategies like phytoremediation are required. In this review, it will discuss recent advancement and potential application of plants for lead removal from the environment.


Subject(s)
Biodegradation, Environmental , Lead/pharmacokinetics , Plants/metabolism , Soil Pollutants/pharmacokinetics , Cations/metabolism , Edetic Acid , Genetic Markers , Inactivation, Metabolic , Lead/metabolism , Lead/toxicity , Nitric Oxide/metabolism , Phytochelatins/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Plants/genetics , Plants/microbiology , Soil Pollutants/metabolism , Soil Pollutants/toxicity
8.
J Exp Bot ; 57(8): 1735-45, 2006.
Article in English | MEDLINE | ID: mdl-16760420

ABSTRACT

Leaf senescence and associated changes in redox components were monitored in commercial pea (Pisum sativum L. cv. Phoenix) plants grown under different nitrogen regimes for 12 weeks until both nodules and leaves had fully senesced. One group of plants was inoculated with Rhizobium leguminosarum and grown with nutrient solution without nitrogen. A second group was not inoculated and these were grown on complete nutrient solution containing nitrogen. Leaf senescence was evident at 11 weeks in both sets of plants as determined by decreases in leaf chlorophyll and protein. However, a marked decrease in photosynthesis was observed in nodulated plants at 9 weeks. Losses in the leaf ascorbate pool preceded leaf senescence, but leaf glutathione decreased only during the senescence phase. Large decreases in dehydroascorbate reductase and catalase activities were observed after 9 weeks, but the activities of other antioxidant enzymes remained high even at 11 weeks. The extent of lipid peroxidation, the number of protein carbonyl groups and the level of H(2)O(2) in the leaves of both nitrate-fed and nodulated plants were highest at the later stages of senescence. At 12 weeks, the leaves of nodulated plants had more protein carbonyl groups and greater lipid peroxidation than the nitrate-fed controls. These results demonstrate that the leaves of nodulated plants undergo an earlier inhibition of photosynthesis and suffer enhanced oxidation during the senescence phase than those from nitrate-fed plants.


Subject(s)
Aging/metabolism , Antioxidants/metabolism , Nitrogen/metabolism , Pisum sativum/metabolism , Plant Leaves/metabolism , Ascorbic Acid/metabolism , Nitrogen Fixation , Oxidation-Reduction , Pisum sativum/enzymology , Pisum sativum/physiology , Plant Leaves/enzymology , Plant Leaves/physiology , Rhizobium leguminosarum/physiology , Symbiosis/physiology
9.
Trends Plant Sci ; 6(4): 145-50, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11286918

ABSTRACT

The important role of plant peroxisomes in a variety of metabolic reactions such as photorespiration, fatty acid beta-oxidation, the glyoxylate cycle and generation-degradation of hydrogen peroxide is well known. In recent years, the presence of a novel group of enzymes, mainly involved in the metabolism of oxygen free-radicals, has been shown in peroxisomes. In addition to hydrogen peroxide, peroxisomes can generate superoxide-radicals and nitric oxide, which are known cellular messengers with a variety of physiological roles in intra- and inter-cellular communication. Nitric oxide and hydrogen peroxide can permeate the peroxisomal membrane and superoxide radicals can be produced on the cytosolic side of the membrane. The signal molecule-generating capacity of peroxisomes can have important implications for cellular metabolism in plants, particularly under biotic and abiotic stress.


Subject(s)
Nitric Oxide/metabolism , Oxidative Stress/physiology , Peroxisomes/metabolism , Plants/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Cell Membrane/physiology , Cell Respiration/physiology , Free Radicals/metabolism , Hydrogen Peroxide/metabolism , NADP/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/metabolism , Plants/ultrastructure
10.
Plant Cell Physiol ; 41(11): 1218-28, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11092906

ABSTRACT

A 36-kDa polypeptide of unknown function was identified by us in the boundary membrane fraction of cucumber seedling glyoxysomes. Evidence is presented in this study that this 36-kDa polypeptide is a glyoxysomal membrane porin. A sequence of 24 amino acid residues derived from a CNBr-cleaved fragment of the 36-kDa polypeptide revealed 72% to 95% identities with sequences in mitochondrial or non-green plastid porins of several different plant species. Immunological evidence indicated that the 36-kDa (and possibly a 34-kDa polypeptide) was a porin(s). Antiserum raised against a potato tuber mitochondrial porin recognized on immunoblots 34-kDa and 36-kDa polypeptides in detergent-solubilized membrane fractions of cucumber seedling glyoxysomes and mitochondria, and in similar glyoxysomal fractions of cotton, castor bean, and sunflower seedlings. The 36-kDa polypeptide seems to be a constitutive component because it was detected also in membrane protein fractions derived from cucumber leaf-type peroxisomes. Compelling evidence that one or both of these polypeptides were authentic glyoxysomal membrane porins was obtained from electron microscopic immunogold analyses. Antiporin IgGs recognized antigen(s) in outer membranes of glyoxysomes and mitochondria. Taken together, the data indicate that membranes of cucumber (and other oilseed) glyoxysomes, leaf-type peroxisomes, and mitochondria possess similar molecular mass porin polypeptide(s) (34 and 36 kDa) with overlapping immunological and amino acid sequence similarities.


Subject(s)
Cucumis sativus/chemistry , Glyoxysomes/chemistry , Intracellular Membranes/chemistry , Porins/chemistry , Amino Acid Sequence , Cucumis sativus/ultrastructure , Electrophoresis, Polyacrylamide Gel , Germination , Glyoxysomes/ultrastructure , Immunohistochemistry , Intracellular Membranes/ultrastructure , Membrane Proteins/chemistry , Microscopy, Immunoelectron , Mitochondria/chemistry , Molecular Sequence Data , Molecular Weight , Peroxisomes/chemistry , Sequence Analysis, Protein , Sequence Homology, Amino Acid
11.
J Biol Chem ; 274(51): 36729-33, 1999 Dec 17.
Article in English | MEDLINE | ID: mdl-10593979

ABSTRACT

The presence of nitric-oxide synthase (NOS) in peroxisomes from leaves of pea plants (Pisum sativum L.) was studied. Plant organelles were purified by differential and sucrose density gradient centrifugation. In purified intact peroxisomes a Ca(2+)-dependent NOS activity of 5.61 nmol of L-[(3)H]citrulline mg(-1) protein min(-1) was measured while no activity was detected in mitochondria. The peroxisomal NOS activity was clearly inhibited (60-90%) by different well characterized inhibitors of mammalian NO synthases. The immunoblot analysis of peroxisomes with a polyclonal antibody against the C terminus region of murine iNOS revealed an immunoreactive protein of 130 kDa. Electron microscopy immunogold-labeling confirmed the subcellular localization of NOS in the matrix of peroxisomes as well as in chloroplasts. The presence of NOS in peroxisomes suggests that these oxidative organelles are a cellular source of nitric oxide (NO) and implies new roles for peroxisomes in the cellular signal transduction mechanisms.


Subject(s)
Nitric Oxide Synthase/metabolism , Peroxisomes/metabolism , Plants/enzymology , Nitric Oxide Synthase/isolation & purification , Plants/ultrastructure
12.
Biochem J ; 337 ( Pt 3): 531-6, 1999 Feb 01.
Article in English | MEDLINE | ID: mdl-9895298

ABSTRACT

The production of superoxide radicals (O2(-).) and the activities of ferricyanide reductase and cytochrome c reductase were investigated in peroxisomal membranes from pea (Pisum sativum L.) leaves using NADH and NADPH as electron donors. The generation of O2(-). by peroxisomal membranes was also assayed in native polyacrylamide gels using an in situ staining method with NitroBlue Tetrazolium (NBT). When peroxisomal membranes were assayed under native conditions using NADH or NADPH as inducer, two different O2(-).-dependent Formazan Blue bands were detected. Analysis by SDS/PAGE of these bands demonstrated that the NADH-induced NBT reduction band contained several polypeptides (PMP32, PMP61, PMP56 and PMP18, where PMP is peroxisomal membrane polypeptide and the number indicates molecular mass in kDa), while the NADPH-induced band was due exclusively to PMP29. PMP32 and PMP29 were purified by preparative SDS/PAGE and electroelution. Reconstituted PMP29 showed cytochrome c reductase activity and O2(-). production, and used NADPH specifically as electron donor. PMP32, however, had ferricyanide reductase and cytochrome c reductase activities, and was also able to generate O2(-). with NADH as electron donor, whereas NADPH was not effective as an inducer. The reductase activities of, and O2(-). production by, PMP32 were inhibited by quinacrine. Polyclonal antibodies against cucumber monodehydroascorbate reductase (MDHAR) recognized PMP32, and this polypeptide is likely to correspond to the MDHAR reported previously in pea leaf peroxisomal membranes.


Subject(s)
Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Microbodies/metabolism , Peptides/metabolism , Pisum sativum/metabolism , Superoxides/metabolism , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Intracellular Membranes/chemistry , Membrane Proteins/chemistry , Membrane Proteins/isolation & purification , Microbodies/chemistry , Molecular Weight , NAD/metabolism , NADP/metabolism , Pisum sativum/chemistry , Peptides/chemistry , Peptides/isolation & purification , Plant Leaves/chemistry , Plant Leaves/metabolism
13.
Free Radic Res ; 31 Suppl: S25-31, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10694037

ABSTRACT

The effect of growing pea plants with 50 microM CdCl2 on the activated oxygen metabolism was studied at subcellular level in peroxisomes isolated from pea leaves. Cadmium treatment produced proliferation of peroxisomes as well as an increase in the content of H2O2 in peroxisomes from pea leaves, but in peroxisomal membranes no significant effect on the NADH-dependent O2*- production was observed. The rate of lipid peroxidation of membranes was slightly decreased in peroxisomes from Cd-treated plants. This could be due to the Cd-induced increase in the activity of some antioxidative enzymes involved in H2O2 removal, mainly ascorbate peroxidase and glutathione reductase, as well as the NADP-dependent dehydrogenases present in these organelles. The activity of xanthine oxidase did not experiment changes by Cd treatment and this suggests that O2*- production in the peroxisomal matrix is not involved in Cd toxicity. This was supported by the absence of changes in plants treated with Cd in the Mn-SOD activity, responsible for O2*- removal in the peroxisomal matrix. Results obtained indicate that toxic Cd levels induce imbalances in the activated oxygen metabolism of pea leaf peroxisomes, but its main effect is an enhancement of the H2O2 concentration of these organelles. Peroxisomes respond to Cd toxicity by increasing the activity of antioxidative enzymes involved in the ascorbate-glutathione cycle and the NADP-dependent dehydrogenases located in these organelles.


Subject(s)
Cadmium/toxicity , Pisum sativum/drug effects , Pisum sativum/metabolism , Ascorbate Peroxidases , Catalase/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Oxidation-Reduction , Peroxidases/metabolism , Peroxisomes/drug effects , Peroxisomes/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Superoxide Dismutase/metabolism , Superoxides/metabolism
14.
Free Radic Res ; 31 Suppl: S235-41, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10694065

ABSTRACT

Catalase activity was analyzed in seven organs of pea (Pisum sativum L.) plants: leaves, seeds, flowers, shoots, whole fruits, pods and roots. Leaves showed the highest activity followed by whole fruits and flowers. Catalase was purified from pea leaf peroxisomes. These organelles were isolated from leaves by differential and sucrose density-gradient centrifugation, and catalase was purified by two steps involving anion exchange and hydrophobic chromatography using a Fast Protein Liquid Chromatography system. Pure catalase had a specific activity of 953 mmol H2O2 min(-1) mg(-1) protein and was purified 1000-fold, with a yield of about 19 microg enzyme per kg of pea leaves. Analysis by SDS-PAGE and immunoblot showed that the pea catalase was composed of subunits of 57 kDa. Ultraviolet and visible absorption spectra of the enzyme showed two absorption maxima at 252 and 400 nm with molar extinction coefficients of 2.14 x 10(6) and 7.56 x 10(6) M(-1) cm(-1), respectively. By isoelectric focusing (pH 5-7), five different isoforms were identified and designated as CAT1-5, with isoelectric points of 6.41, 6.36, 6.16, 6.13 and 6.09, respectively. All the catalase isoforms contained a subunit of 57 kDa. Post-embedment, EM immunogold labelling of catalase showed a uniform distribution of the enzyme inside the matrix and core of pea leaf peroxisomes.


Subject(s)
Catalase/isolation & purification , Isoenzymes/isolation & purification , Pisum sativum/enzymology , Catalase/chemistry , Isoelectric Point , Isoenzymes/chemistry , Microscopy, Immunoelectron , Molecular Weight , Pisum sativum/ultrastructure , Peroxisomes/enzymology , Peroxisomes/ultrastructure , Plant Leaves/enzymology , Plant Leaves/ultrastructure , Protein Structure, Quaternary , Spectrophotometry , Subcellular Fractions/enzymology , Tissue Distribution
15.
Am J Physiol ; 274(6): R1578-87, 1998 06.
Article in English | MEDLINE | ID: mdl-9608011

ABSTRACT

Herein we report on the kinetic and protein expression of glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase, and malic enzyme (ME) in the liver of the trout (Oncorhynchus mykiss) during a long-term starvation-refeeding cycle. Starvation significantly depressed the activity of these enzymes by almost 60%, without changing the Michaelis constant. The time response to this nutritional stimulus increased with fish weight. The sharp decline in G6PDH and ME activities was due to a specific protein-repression phenomenon, as demonstrated by molecular and immunohistochemical analyses. Also, the dimeric banding pattern of liver G6PDH shifted from the fully reduced and partially oxidized forms, predominant in control, to a fully oxidized form, more sensitive to proteolytic inactivation. Refeeding caused opposite effects in both protein concentration and enzyme activities of about twice the control values in the first stages, later reaching the normal enzyme activity levels. Additionally, the partially oxidized form of G6PDH increased. The kinetics of these enzymes were examined in relation to the various metabolic roles of NADPH. These results clearly indicate that trout liver undergoes protein repression-induction processes under these two contrasting nutritional conditions.


Subject(s)
Animal Feed , Liver/metabolism , NADP/biosynthesis , Starvation/metabolism , Animals , DNA/metabolism , Glucosephosphate Dehydrogenase/metabolism , Kinetics , Liver/growth & development , Malate Dehydrogenase/metabolism , Oncorhynchus mykiss , Phosphogluconate Dehydrogenase/metabolism
16.
Biochem J ; 330 ( Pt 2): 777-84, 1998 Mar 01.
Article in English | MEDLINE | ID: mdl-9480890

ABSTRACT

The presence of the two NADP-dependent dehydrogenases of the pentose phosphate pathway has been investigated in plant peroxisomes from pea (Pisum sativum L.) leaves. Both enzymes, glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44), were present in the matrix of leaf peroxisomes, and their kinetic properties were studied. G6PDH and 6PGDH showed a typical Michaelis-Menten kinetic saturation curve, and had specific activities of 12.4 and 29.6 mU/mg protein, respectively. The Km values of G6PDH and 6PGDH for glucose 6-phosphate and for 6-phosphogluconate were 107.3 and 10.2 microM, respectively. Dithiothreitol did not inhibit G6PDH activity. By isoelectric focusing of peroxisomal matrices, the G6PDH activity was resolved into three isoforms with isoelectric points of 5.55, 5.30 and 4.85. The isoelectric point of peroxisomal 6PGDH was 5.10. Immunoblot analyses of peroxisomal matrix with an antibody against yeast G6PDH revealed a single cross-reactive band of 56 kDa. Post-embedment, EM immunogold labelling of G6PDH confirmed that this enzyme was localized in the peroxisomal matrices, the thylakoid membrane and matrix of chloroplasts, and the cytosol. The presence of the two oxidative enzymes of the pentose phosphate pathway in plant peroxisomes implies that these organelles have the capacity to reduce NADP+ to NADPH for its re-utilization in the peroxisomal metabolism. NADPH is particularly required for the ascorbate-glutathione cycle, which has been recently demonstrated in plant peroxisomes [Jiménez, Hernández, del Río and Sevilla (1997) Plant Physiol. 114, 275-284] and represents an important antioxidant protection system against H2O2 generated in peroxisomes.


Subject(s)
Glucosephosphate Dehydrogenase/metabolism , Microbodies/enzymology , NADP/metabolism , Phosphogluconate Dehydrogenase/metabolism , Pisum sativum/enzymology , Ascorbic Acid/metabolism , Glutathione/metabolism , Kinetics , Microscopy, Electron , Plant Leaves/enzymology , Plant Leaves/ultrastructure
17.
Eur J Cell Biol ; 73(1): 49-57, 1997 May.
Article in English | MEDLINE | ID: mdl-9174671

ABSTRACT

We previously showed via electron microscopic immunocytochemistry that a 73 kDa polypeptide was an authentic peroxisomal membrane protein (PMP73) integrated exclusively into the boundary membrane of glyoxysomes in cucumber seedlings. In this paper we test the hypothesis that this PMP73 is a member of the heat-shock 70 protein (Hsp70) family by comparing amino acid sequences of cyanogen bromide (CNBr)-cleaved polypeptide fragments, immunoreactivities on protein blots, and microscopic immunofluorescence within suspension-cultured BY-2 tobacco cells. A sequence of eight amino acids (DAVGPEIQ) in PMP73 showed a high degree of similarity (up to 88%) with sequences in the same carboxy-terminal region of four plant Hsp70 proteins. IgGs affinity purified to PMP73 recognized on blots a membrane-bound Hsp72 (in pea cotyledon microsomes) and a cucumber PMP61, the latter shown by CNBr cleavage to be a distinct, but immunorelated polypeptide to PMP73. Conversely, IgGs specific for tomato Hsc70 (C-terminal half) recognized cucumber PMP73, and IgGs specific for cucumber DnaJ homologue (entire protein) recognized cucumber PMP61. In BY-2 cells, cucumber PMP73-specific IgGs localized only to peroxisomes. Antibodies raised against portions of tomato Hsc70 also localized to the BY-2 peroxisomes (as well as to cytosolic proteins). Collectively, the data show that authentic cucumber PMPs73 and 61 are immunorelated to each another, and that both exhibit selective immunoreactivity to IgGs from two classes of molecular chaperones, namely Hsp70 proteins and plant DnaJ homologues. They appear to be unique membrane-bound chaperones that likely function as part of the peroxisomal protein translocation machinery.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/immunology , Molecular Chaperones/chemistry , Molecular Chaperones/immunology , Plant Proteins/chemistry , Plant Proteins/immunology , Cucumis sativus , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/immunology , Membrane Proteins/genetics , Microscopy, Fluorescence , Molecular Chaperones/genetics , Molecular Sequence Data , Pisum sativum , Peptides/chemistry , Peptides/immunology , Plant Proteins/genetics , Sequence Homology, Amino Acid
19.
Mol Cell Biochem ; 144(2): 97-104, 1995 Mar 23.
Article in English | MEDLINE | ID: mdl-7623792

ABSTRACT

6-Phosphogluconate dehydrogenase (6PGDH) from rat-liver and kidney-cortex cytosol has been partially purified and almost completely isolated (more than 95%) from glucose-6-phosphate dehydrogenase activity. The purification and isolation procedures included high-speed centrifugation, 60-75% ammonium-sulphate fractionation, by which both hexose-monophosphate dehydrogenases activities were separated, and finally the protein fraction was applied to a chromatographic column of Sephadex G-25 equilibrated with 10 mM Tris-EDTA-NADP buffer, pH 7.6, to eliminate any contaminating metabolites. The kinetic properties of the isolated partially purified liver and renal 6PGDH were examined. The saturation curves of this enzyme in both rat tissues showed a typical Michaelis-Menten kinetic, with no evidence of co-operativity. The optimum pH for both liver and kidney-cortex 6PGDH was 8.0. The Km values of liver 6PGDH for 6-phosphogluconate (6PG) and for NADP were 157 microM and 258 microM respectively, while the specific activity measured at optimum conditions (pH 8.0 and 37 degrees C) was 424.2 mU/mg of protein. NADPH caused a competitive inhibition against NADP with an inhibition constant (Ki) of 21 microM. The Km values for 6PG and NADP from kidney-cortex 6PGDH were 49 microM and 56 microM respectively. The specific activity at pH 8.0 and 37 degrees C was 120.7 mU/mg of protein. NADPH also competitively inhibited 6PGDH activity, with a Ki of 41 microM. This paper describes a quick, easy and reliable method for the separation of the two dehydrogenases present in the oxidative segment of the pentose-phosphate pathway in animal tissues, eliminating interference in the measurements of their activities.


Subject(s)
Kidney Cortex/enzymology , Liver/enzymology , Phosphogluconate Dehydrogenase/isolation & purification , Phosphogluconate Dehydrogenase/metabolism , Animals , Chromatography, Gel , Dose-Response Relationship, Drug , Gluconates/metabolism , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Hydrogen-Ion Concentration , Kinetics , Male , NADP/metabolism , Pentose Phosphate Pathway , Phosphogluconate Dehydrogenase/chemistry , Rats , Rats, Wistar , Temperature
20.
Life Sci ; 56(3): 179-89, 1995.
Article in English | MEDLINE | ID: mdl-7823774

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PDH) from rat-liver and kidney-cortex cytosol has been partially purified and almost completely separated from 6-phosphogluconate dehydrogenase activity. The purification and isolation procedures included high-speed centrifugation, 40-55% ammonium sulphate fractionation, by which both enzyme activities were separated, and finally, the application of the protein fraction to a column of Sephadex G-25 equilibrated with 10 mM Tris-EDTA-NADP buffer, pH 7.6, to eliminate any contaminating metabolites. The kinetic properties of isolated liver and renal G6PDH were examined. Both enzymes showed a typical Michaelis-Menten kinetic saturation curve with no evidence of co-operativity. The optimum pH of both liver and kidney cortex G6PDH was 9.4. The Km values for glucose-6-phosphate (G6P) and for NADP were 3.29 x 10(-4) M and 1.00 x 10(-4) M respectively. The specific activity measured at 37 degrees C and optimum pH was 327.1 mU/ mg of protein. NADPH caused a competitive inhibition with a Ki of 10 microM. The Km values for the G6P and NADP of kidney-cortex G6PDH were 2.06 x 10(-4) and 0.25 x 10(-4) M respectively. The specific activity at pH 9.4 and 37 degrees C was 76.55 mU/mg of protein. The Ki value for NADPH inhibition was 4 microM. This work describes an easy, rapid and reliable method for the separation of the two dehydrogenases involved in the hexose-monophosphate shunt in animal tissues.


Subject(s)
Glucosephosphate Dehydrogenase/metabolism , Kidney Cortex/enzymology , Liver/enzymology , Animals , Chromatography, Ion Exchange , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glucosephosphate Dehydrogenase/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Male , NADP/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...