Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Toxicol Pathol ; 51(4): 160-175, 2023 06.
Article in English | MEDLINE | ID: mdl-37632371

ABSTRACT

Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.


Subject(s)
Hypertension , Pathology, Clinical , Humans , Rats , Mice , Animals , Rats, Inbred SHR , Kidney , Disease Models, Animal
2.
PLoS One ; 17(2): e0264136, 2022.
Article in English | MEDLINE | ID: mdl-35176122

ABSTRACT

Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed-chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans-hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.


Subject(s)
Angiotensin II/toxicity , Disease Models, Animal , Glomerulosclerosis, Focal Segmental/pathology , Hypertension, Renal/pathology , Hypertension/complications , Nephritis/pathology , Nephrosclerosis/pathology , Animals , Glomerulosclerosis, Focal Segmental/etiology , Glomerulosclerosis, Focal Segmental/metabolism , Humans , Hypertension/chemically induced , Hypertension, Renal/etiology , Hypertension, Renal/metabolism , Male , Nephritis/etiology , Nephritis/metabolism , Nephrosclerosis/etiology , Nephrosclerosis/metabolism , Rats , Rats, Inbred SHR , Vasoconstrictor Agents/toxicity
3.
Biosci Rep ; 36(5)2016 10.
Article in English | MEDLINE | ID: mdl-27612496

ABSTRACT

High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin-angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate-high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate-high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes.


Subject(s)
Benzimidazoles/administration & dosage , Diabetic Nephropathies/genetics , Peptidyl-Dipeptidase A/genetics , Proto-Oncogene Proteins/genetics , Receptor, Angiotensin, Type 2/genetics , Receptors, G-Protein-Coupled/genetics , Tetrazoles/administration & dosage , Angiotensin II Type 2 Receptor Blockers/administration & dosage , Angiotensin-Converting Enzyme 2 , Animals , Biphenyl Compounds , Blood Glucose , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Humans , Kidney Tubules/drug effects , Kidney Tubules/pathology , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred NOD , Phosphorylation , Proto-Oncogene Mas , Renin-Angiotensin System/genetics
4.
Hypertension ; 59(5): 1069-78, 2012 May.
Article in English | MEDLINE | ID: mdl-22493070

ABSTRACT

We reported aldosterone as a novel adipocyte-derived factor that regulates vascular function. We aimed to investigate molecular mechanisms, signaling pathways, and functional significance of adipocyte-derived aldosterone and to test whether adipocyte-derived aldosterone is increased in diabetes mellitus-associated obesity, which contributes to vascular dysfunction. Studies were performed in the 3T3-L1 adipocyte cell line and mature adipocytes isolated from human and mouse (C57BL/6J) adipose tissue. Mesenteric arteries with and without perivascular fat and mature adipocytes were obtained from obese diabetic db/db and control db/+ mice. Aldosterone synthase (CYP11B2; mRNA and protein) was detected in 3T3-L1 and mature adipocytes, which secrete aldosterone basally and in response to angiotensin II (Ang II). In 3T3-L1 adipocytes, Ang II stimulation increased aldosterone secretion and CYP11B2 expression. Ang II effects were blunted by an Ang II type 1 receptor antagonist (candesartan) and inhibitors of calcineurin (cyclosporine A and FK506) and nuclear factor of activated T-cells (VIVIT). FAD286 (aldosterone synthase inhibitor) blunted adipocyte differentiation. In candesartan-treated db/db mice (1 mg/kg per day, 4 weeks) increased plasma aldosterone, CYP11B2 expression, and aldosterone secretion were reduced. Acetylcholine-induced relaxation in db/db mesenteric arteries containing perivascular fat was improved by eplerenone (mineralocorticoid receptor antagonist) without effect in db/+ mice. Adipocytes possess aldosterone synthase and produce aldosterone in an Ang II/Ang II type 1 receptor/calcineurin/nuclear factor of activated T-cells-dependent manner. Functionally adipocyte-derived aldosterone regulates adipocyte differentiation and vascular function in an autocrine and paracrine manner, respectively. These novel findings identify adipocytes as a putative link between aldosterone and vascular dysfunction in diabetes mellitus-associated obesity.


Subject(s)
Adipocytes/metabolism , Aldosterone/biosynthesis , Calcineurin/metabolism , Diabetes Complications/metabolism , Diabetic Angiopathies/metabolism , Obesity/complications , Obesity/metabolism , Adipocytes/drug effects , Animals , Benzimidazoles/pharmacology , Biphenyl Compounds , Calcineurin/drug effects , Cells, Cultured , Diabetic Angiopathies/etiology , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Random Allocation , Sensitivity and Specificity , Signal Transduction , Tetrazoles/pharmacology
5.
J Hypertens ; 29(7): 1400-10, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21602712

ABSTRACT

RATIONALE: Hyperaldosteronism, important in hypertension, is associated with electrolyte alterations, including hypomagnesemia, through unknown mechanisms. OBJECTIVE: To test whether aldosterone influences renal Mg(2+) transporters, (transient receptor potential melastatin (TRPM) 6, TRPM7, paracellin-1) leading to hypomagnesemia, hypertension and target organ damage and whether in a background of magnesium deficiency, this is exaggerated. METHODS AND RESULTS: Aldosterone effects in mice selectively bred for high-normal (MgH) or low (MgL) intracellular Mg(2+) were studied. Male MgH and MgL mice received aldosterone (350 µg/kg per day, 3 weeks). SBP was elevated in MgL. Aldosterone increased blood pressure and albuminuria and increased urinary Mg(2+) concentration in MgH and MgL, with greater effects in MgL. Activity of renal TRPM6 and TRPM7 was lower in vehicle-treated MgL than MgH. Aldosterone increased activity of TRPM6 in MgH and inhibited activity in MgL. TRPM7 and paracellin-1 were unaffected by aldosterone. Aldosterone-induced albuminuria in MgL was associated with increased renal fibrosis, increased oxidative stress, activation of mitogen-activated protein kinases and nuclear factor-NF-κB and podocyte injury. Mg(2+) supplementation (0.75% Mg(2+)) in aldosterone-treated MgL normalized plasma Mg(2+), increased TRPM6 activity and ameliorated hypertension and renal injury. Hence, in a model of inherited hypomagnesemia, TRPM6 and TRPM7, but not paracellin-1, are downregulated. Aldosterone further decreased TRPM6 activity in hypomagnesemic mice, a phenomenon associated with hypertension and kidney damage. Such effects were prevented by Mg(2+) supplementation. CONCLUSION: Amplified target organ damage in aldosterone-induced hypertension in hypomagnesemic conditions is associated with dysfunctional Mg(2+)-sensitive renal TRPM6 channels. Novel mechanisms for renal effects of aldosterone and insights into putative beneficial actions of Mg(2+), particularly in hyperaldosteronism, are identified.


Subject(s)
Aldosterone/toxicity , Disease Models, Animal , Hypercalciuria/physiopathology , Hypertension/physiopathology , Membrane Proteins/physiology , Nephrocalcinosis/physiopathology , Renal Tubular Transport, Inborn Errors/physiopathology , TRPM Cation Channels/physiology , Animals , Claudins , Hypertension/chemically induced , Mice , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...