ABSTRACT
OBJECTIVE: To develop a treatment that enhances recovery from envenomation-induced lesions caused by Bothrops jararaca venom by using ultrasound in combination with gold nanoparticles (GNPs). METHODS: A total of 108 Swiss mice were arranged into nine groups. The animals underwent necrotic induction with 250 µg B. jararaca venom (BjV) and were treated with ultrasound (U) at 1 MHz frequency at an intensity of 0.8 W/cm² for 5 min, 30 mg/L GNPs, and anti-bothropic serum (AS) in the following combinations: saline solution (SS); BjV; BjV + AS; BjV + AS + U; BjV + GNPs + AS; BjV + GNPs + AS + U; BjV + GNPs; BjV + GNPs + U; and BjV + U. The necrotic area, histology, oxidative stress, oxidative damage, and anti-oxidant system were assessed to evaluate the effects of the treatments. RESULTS: Treatments that included GNPs, U, and/or AS demonstrated reductions in necrotic area, increases in angiogenesis and fibroblast means, decreases in inflammatory infiltrates, and improvements in collagen synthesis. Additionally, there was an increase in oxidants and oxidant damage within the gastrocnemius muscle, along with an increase in anti-oxidants. Furthermore, systemic effects appear to have been achieved, improving the anti-oxidant system at the cardiovascular and renal levels. CONCLUSION: The use of GNPs and U may be effective at treating lesions caused by B. jararaca snake venom.
ABSTRACT
There are several reasons for skin damage, including genetic factors, disorders, acute trauma, hard-to-heal wounds, or surgical interventions. Whatever the cause, wounds have a substantial impact on people who experience them, their caregivers and the healthcare system. Advanced wound care products have been researched and developed, providing an opportunity for faster and more complete healing. Tissue engineering (TE) is a promising strategy that can overcome limitations when choosing a graft for a wound. Amniotic membrane is a highly abundant, readily available, and inexpensive biological tissue that does not raise ethical concerns, with many applications in different fields of TE and regenerative medicine. It has attractive physical characteristics, such as elasticity, rigidity and mechanical strength, among others. The effects can also be potentiated by association with other substances, such as hyaluronic acid and growth factors. This paper describes new perspectives involving the use of amniotic membranes.
Subject(s)
Amnion , Tissue Engineering , Wound Healing , Humans , Amnion/transplantation , Wounds and Injuries/therapy , Regenerative Medicine/methodsABSTRACT
Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.
Subject(s)
Fructose , Obesity , Mice , Male , Animals , Fructose/adverse effects , Oxidative Stress , Inflammation , BrainABSTRACT
A perfect graft for wound care must be readily available without affecting the immune response, covering and protecting the wound bed. Considering previous studies have already established the use of hyaluronic acid (HA) for the treatment of wounds but the data presented on the amniotic membrane (AM) and its promising effects on healing still requires further investigation, this study aimed to evaluate the effects of the application of a decellularized amniotic membrane solubilized with hyaluronic acid on the healing process of cutaneous wounds on the 7th and 14th day, to evaluate the evolution of the wound and the inflammatory phases in these two times. Cutaneous lesions were excised from the dorsal region and 96 Wistar rats were divided into four groups: I-Excisional wound (EW); II-EW + AM; III-EW + HA; IV-EW + AM + HA. The present study demonstrated that the proposed combined therapy favors the tissue repair process of the epithelial lesion. Results showed a reduction in pro-inflammatory cytokines, an increase in anti-inflammatory cytokines, an increase in TGF-ß, and attenuation of oxidative stress, reducing the acute inflammatory response and promoting the beginning of tissue repair. We concluded that the proposed therapies accelerated the inflammatory process with anticipation of the repair phase.
Subject(s)
Amnion , Hyaluronic Acid , Rats , Animals , Hyaluronic Acid/pharmacology , Wound Healing , Rats, Wistar , CytokinesABSTRACT
Cryotherapy is a therapeutic modality widely used for the treatment of muscle injuries to control pain and inflammatory processes. This study aimed to investigate the effects of cryotherapy on the inflammatory and oxidative stress parameters and mechanical properties of, and pain in, the skeletal muscles of rats with lacerative muscle injury. The rats were anesthetized with 4% isoflurane and subjected to gastrocnemius muscle laceration injury. After injury, all animals in the intervention groups received cryotherapy treatment for 20 minutes using plastic bags containing crushed ice. The protocol comprised three daily applications at 3-hour intervals on the day of injury, with reapplication 24 hours later. Seventy-two male Wistar rats were divided into three groups: sham, muscle injury (MI), and MI + cryotherapy (MI + cryo). Muscle mechanical properties were analyzed by mechanical tensile testing on day 7 after injury. The MI + cryo group showed reduced TNF-α, IFN-γ, and IL1ß levels; elevated IL4, IL6, and IL10 levels; reduced oxidant production and carbonyl levels; and elevated sulfhydryl contents. Animals that underwent tissue cooling showed superoxide dismutase activity and glutathione levels close to those of the animals in the sham group. The MI and MI + cryo groups showed reduced values of the evaluated mechanical properties and lower mechanical thresholds compared to those of the animals from the sham group. Our results demonstrated that the proposed cryotherapy protocol reduced the inflammatory process and controlled oxidative stress but did not reverse the changes in the mechanical properties of muscle tissues or provide analgesic effects within the time frame analyzed.
Subject(s)
Cryotherapy , Lacerations/physiopathology , Lacerations/therapy , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology , Wound Healing/physiology , Animals , Cytokines/blood , Fluoresceins/metabolism , Glutathione/metabolism , Inflammation/physiopathology , Male , Muscle, Skeletal/metabolism , Nitrites/metabolism , Oxidation-Reduction , Oxidative Stress , Rats, Wistar , Superoxide Dismutase/metabolism , Tensile StrengthABSTRACT
Parkinson's disease (PD) is recognized as the second most common neurodegenerative disorder, after Alzheimer's disease. Reserpine administration to animals has been suggested as a PD model based on the effects of this monoamine-depleting agent on motor activity. Studies show that gold nanoparticles (GNPs) are effective for treating neurodegenerative diseases when used at certain concentrations. The objective of the present study was to evaluate the effects of GNPs administration under behavioral and oxidative stress conditions in an experimental model of PD. Fourty male C57BL/6 mice (20-30 g) were used, The animals were divided into four groups (N = 6): Sham; Sham and GNPs; Reserpine; Reserpine and GNPs. Three doses at the concentration of 0.25 mg/kg reserpine were administered subcutaneously at 48 h intervals. Treatment with GNPs was administered with 2.5 mg/kg GNPs (20 nm) for five consecutive days. Our results showed the therapeutic potential of GNPs, where the parameters observed in behavioral tests and oxidative stress were reverted in GNP-treated mice. It also partially improved neurotrophic factors, which are necessary for the survival of neurons. GNPs reversed the symptoms of PD caused by the use of alkaline reserpine in C57BL/6 mice, especially without toxicity. The results of this study suggest that GNPs could have clinical potential as an inhibitor of inflammation and oxidative stress in the CNS, thereby alleviating the secondary neurodegenerative processes and neuronal cell death caused by reserpine. These beneficial effects of GNPs provide support for new analyses to better understanding in the process of PD degeneration.
Subject(s)
Metal Nanoparticles , Parkinson Disease , Animals , Disease Models, Animal , Gold , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Parkinson Disease/drug therapy , Particle SizeABSTRACT
Percutaneous collagen induction (PCI) is an alternative treatment for skin dysfunctions, it aims to stimulate collagen production by encouraging normal wound healing that occurs after any trauma by inducing microlesions; also it may be potentiated with the association with drugs such as hyaluronic acid (HA). Our objective was to evaluate the effects of PCI associated with hyaluronic acid (0.9%) on inflammatory process, oxidative stress, and collagen production in rat epidermis. For the study, 36 adult Wistar rats were randomly divided into 6 groups (n = 6): Control; PCI 0.5; PCI 1.0; HA; PCI 0.5 + HA; and PCI 1.0 + HA. The animals were anesthetized, trichotomized, and the application of therapies was performed once; After 7 days, the animals were euthanized for removal of the skin region. Levels of pro-inflammatory (IL1, IL6, TNFα), anti-inflammatory (IL4 and IL10) cytokines and growth factors (FGF, TGFß) were evaluated, besides oxidative stress parameters and histological analysis. In combination groups, there is a decrease in TNFα compared with the control and PCI groups in contrast to a significant increase in anti-inflammatory cytokines and growth factors. Oxidant and oxidative damage levels showed a significant decrease in PCI + HA groups in relation to PCI groups while antioxidant defense increased in PCI + HA groups compared with the control group. The number of fibroblasts was increased in the PCI 1.0 group in relation to the control, HA, and PCI 0.5. The number of blood vessels and collagen area was increased in groups PCI and PCI + HA compared with the HA group. We conclude that the combination of PCI with HA is able to accelerate the acute inflammatory process, reducing its deleterious effects and anticipating the chronic response, contributing to tissue repair.
Subject(s)
Collagen/metabolism , Hyaluronic Acid/metabolism , Inflammation , Oxidative Stress , Animals , Antioxidants/metabolism , Cytokines/metabolism , Fibroblasts/metabolism , Induction Chemotherapy , Male , Percutaneous Coronary Intervention , Rats , Rats, Wistar , Reactive Oxygen Species , Wound Healing/drug effectsABSTRACT
The use of nanotechnology for administering drugs is a recent development that presents promising results. Therapeutic Pulsed Ultrasound (TPU) is one such therapeutic option and is widely used for treating soft tissue lesions. Thus, the objective of this study was to investigate the therapeutic effect of phonophoresis using diclofenac (DC) linked to gold nanoparticles (GNPs) in the skeletal muscle of rats used as a model of traumatic muscular injury. Wistar rats were divided into eight groups (N = 10): Sham, Muscle injury (MI), MI + TPU, MI + DC, MI + GNPs, MI + TPU + DC, MI + TPU + GNPs, and MI + TPU + DC-GNPs. The traumatic injury was performed in the gastrocnemius with a single direct traumatic impact via an injuring press. The animals received daily treatment for 5 consecutive days with TPU and gel with DC and/or GNPs. Two hours after the last treatment session, animals were euthanized and the gastrocnemius muscle surgically removed for histological and biochemical analysis. The groups exposed to some therapies (MI + TPU + DC, MI + TPU + GNPs and MI + TPU + DC-GNPs) showed reduced levels of pro-inflammatory cytokines, whereas an increase in anti-inflammatory cytokine levels was observed in the group exposed to all therapies combined (MI + TPU + DC-GNPs). Reactive species production and protein damage resulting from oxidative damage was lower for the group exposed to all tested therapies had lower production. Lower protein damage was also observed in the TPU + GNPs group. The group that underwent all tested therapies combined showed a significant increase in antioxidants compared to the MI group. During histological analysis, the MI group showed large amounts of cell infiltration and centralized nuclei, whereas the MI + TPU + DC-GNPs group showed structural improvements. Pain levels in the MI + TPU + DC-GNPs group were lower than those of the MI group. We believe that the association of TPU with DC linked to GNPs decreases the inflammation caused by traumatic muscle injury and accelerates tissue repair.
Subject(s)
Diclofenac/therapeutic use , Gold/chemistry , Metal Nanoparticles/chemistry , Muscle, Skeletal/injuries , Phonophoresis , Wounds and Injuries/drug therapy , Animals , Catalase/metabolism , Diclofenac/pharmacology , Disease Models, Animal , Glutathione/metabolism , Hyperalgesia/complications , Metal Nanoparticles/ultrastructure , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Superoxide Dismutase/metabolism , Wounds and Injuries/complications , Wounds and Injuries/pathologyABSTRACT
Studies have shown the benefits of gold nanoparticles (GNPs) in muscle and epithelial injury models. In physiotherapy, the use of the microcurrent apparatus is associated with certain drugs (Iontophoresis) to increase the topical penetration and to associate the effects of both therapies. Therefore, the objective of this study was to investigate the effects of iontophoresis along with GNPs in the skeletal muscle of rats exposed to a traumatic muscle injury. We utilised 50 Wistar rats randomly divided in to five experimental groups (n = 10): Control group (CG); Muscle injury group (MI); MI + GNPs (20 nm, 30 mg kg-1); MI + Microcurrent (300 µA); and MI + Microcurrent + GNPs. The treatment was performed daily for 7 days, with the first session starting at 24 h after the muscle injury. The animals were sacrificed and the gastrocnemius muscle was surgically removedand stored for the proper evaluations. The group that received iontophoresis with GNPs showed significant differences in inflammation and oxidative stress parameters and in the histopathological evaluation showed preserved morphology. In addition, we observed an improvement in the locomotor response and pain symptoms of these animals. These results suggest that the association of boththerapies accelerates the inflammatory response of the injured limb.
Subject(s)
Gold/chemistry , Iontophoresis/methods , Metal Nanoparticles/administration & dosage , Muscle, Skeletal/drug effects , Animals , Disease Models, Animal , Inflammation/drug therapy , Inflammation/pathology , Male , Muscle, Skeletal/injuries , Oxidative Stress/drug effects , Rats , Rats, WistarABSTRACT
The bacterial lipopolysaccharide (LPS) is a highly toxic molecule derived from the outer membrane of gram-negative bacteria. LPS endotoxin affects the lungs and is used as a model of acute pulmonary inflammation affecting the cellular morphology of the organ. Previously, gold nanoparticles (GNPs) have been shown to demonstrate anti-inflammatory and antioxidative activity in muscle and epithelial injury models. The objective of this study was to investigate the effect of the intraperitoneal treatment using GNPs on the inflammatory response and pulmonary oxidative stress induced by LPS. Wistar rats were divided into four groups (N = 10): Sham; Sham + GNPs 2.5 mg/kg; LPS; and LPS + GNPs 2.5 mg/kg. Treatment with LPS upregulated the levels of markers of cellular and hepatic damage (CK, LDH, AST, and alanine aminotransferase); however, the group treated with only GNPs exhibited no toxicity. Treatment with GNPs reversed LPS-induced changes with respect to total peritoneal leukocyte count and the pulmonary levels of pro-inflammatory cytokines (IFN-γ and IL-6). Histological analysis revealed that treatment with GNPs reversed the increase in alveolar septum thickness due to LPS-induced fibrosis. In addition, treatment with GNPs decreased production of oxidants (nitrite and DCFH), reduced oxidative damage (carbonyl and sulfhydryl), and downregulated activities of superoxide dismutase and catalase. Treatment with GNPs did not showed toxicity; however, it exhibited anti-inflammatory and antioxidative activity that reversed morphological alterations induced by LPS.
Subject(s)
Gold/therapeutic use , Metal Nanoparticles/therapeutic use , Pneumonia/pathology , Pneumonia/therapy , Acute Disease , Animals , Antioxidants/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Lipopolysaccharides , Lung/pathology , Male , Metal Nanoparticles/ultrastructure , Oxidative Stress , Pneumonia/enzymology , Rats, Wistar , Spectrophotometry, UltravioletABSTRACT
The repair process consists of molecular and cellular events that can be accelerated by specific therapies. Considering this, the objective of this study was to evaluate the effects of ibuprofen phonophoresis associated with gold nanoparticles in the animal model of traumatic muscle injury. Was used 80 male wistar rats divided into eight groups: Sham; Muscle injury (MI); MIâ¯+â¯therapeutic pulsed ultrasound (TPU); MIâ¯+â¯Ibuprofen (IBU); MIâ¯+â¯GNPs; MIâ¯+â¯TPU+ IBU; MIâ¯+â¯TPUâ¯+â¯GNPs and MIâ¯+â¯TPUâ¯+â¯IBUâ¯+â¯GNPs. The lesion in the gastrocnemius was performed by a single direct trauma impact on the injured press. The animals were treated with pulsed ultrasound and the gel with gold nanoparticles and/or ibuprofen. The treatment was applied daily for 5 days and the first session was 12 h after the muscle injury. The gastrocnemius muscle was surgically removed for analyzes biochemical, molecular and histological. In the analyzes only the MIâ¯+â¯TPUâ¯+â¯IBUâ¯+â¯GNPs group showed a reduction in TNF-a and IL-1 levels, with a concomitant increase in the levels of anti-inflammatory cytokines. In the analysis of oxidative stress, only the MIâ¯+â¯TPUâ¯+â¯IBUâ¯+â¯GNPs group presented a reversal of the condition when compared to the MI group. In the histological analysis, the MI group presented a large cell infiltrate and a centralized nucleus and only the MIâ¯+â¯TPUâ¯+â¯IBUâ¯+â¯GNPs group showed a structural improvement, also in the pain results the MIâ¯+â¯TPUâ¯+â¯IBUâ¯+â¯GNPs showed a significant difference in comparison to the MI group (p<0.01). We believe that the effects of phonophoresis with anti-inflammatory drugs associated with gold nanoparticles may potentiate the reduction of the inflammatory response and regulate the cellular redox state.
Subject(s)
Analgesics/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Gold/administration & dosage , Ibuprofen/administration & dosage , Metal Nanoparticles/administration & dosage , Muscle, Skeletal/injuries , Muscular Diseases/drug therapy , Phonophoresis , Animals , Cytokines/immunology , Disease Models, Animal , Male , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Muscular Diseases/immunology , Muscular Diseases/pathology , Oxidative Stress/drug effects , Rats, WistarABSTRACT
This study evaluated the effects of omega-3 polyunsaturated fatty acids (PUFAs) on oxidative stress and energy metabolism parameters in the visceral fat of a high-fat-diet induced obesity model. Energy intake, body mass, and visceral fat mass were also evaluated. Male Swiss mice received either a control diet (control group) or a high-fat diet (obese group) for 6 weeks. After this period, the groups were divided into control + saline, control + omega-3, obese + saline, and obese + omega-3, and to these groups 400 mg·(kg body mass)-1·day-1 of fish oil (or saline) was administered orally, for 4 weeks. Energy intake and body mass were monitored throughout the experiment. In the 10th week, the animals were euthanized and the visceral fat (mesenteric) was removed. Treatment with omega-3 PUFAs did not affect energy intake or body mass, but it did reduced visceral fat mass. In visceral fat, omega-3 PUFAs reduced oxidative damage and alleviated changes to the antioxidant defense system and the Krebs cycle. The mitochondrial respiratory chain was neither altered by obesity nor by omega-3 PUFAs. In conclusion, omega-3 PUFAs have beneficial effects on the visceral fat of obese mice because they mitigate changes caused by the consumption of a high-fat diet.