Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Immunol ; 42(7): 604-621, 2021 07.
Article in English | MEDLINE | ID: mdl-34171295

ABSTRACT

Oxygen (O2) availability is a key factor regulating microbiota composition and the homeostatic function of cells in the intestinal mucosa of vertebrates. Microbiota-derived metabolites increase O2 consumption by intestinal epithelial cells (IECs), reducing its availability in the gut and leading to hypoxia. This physiological hypoxia activates cellular hypoxic sensors that adapt the metabolism and function of IECs and mucosa-resident cells, such as type-3 innate lymphoid cells (ILC3s). In this review, we discuss recent evidence suggesting that the intricate and multidirectional interactions among the microbiota, hypoxia/hypoxic sensors, and mammalian host cells (IECs and ILC3s) determine how the intestinal barrier and host-microbiota-pathogens connections are molded. Understanding these interactions might provide new treatment possibilities for dysbiosis, as well as certain inflammatory and infectious diseases.


Subject(s)
Gastrointestinal Microbiome , Animals , Dysbiosis , Hypoxia , Immunity, Innate , Intestinal Mucosa , Lymphocytes
2.
Front Immunol ; 9: 142, 2018.
Article in English | MEDLINE | ID: mdl-29515566

ABSTRACT

Pneumonia is one of the leading causes of death and mortality worldwide. The inflammatory responses that follow respiratory infections are protective leading to pathogen clearance but can also be deleterious if unregulated. The microbiota is known to be an important protective barrier against infections, mediating both direct inhibitory effects against the potential pathogen and also regulating the immune responses contributing to a proper clearance of the pathogen and return to homeostasis. GPR43 is one receptor for acetate, a microbiota metabolite shown to induce and to regulate important immune functions. Here, we addressed the role of GPR43 signaling during pulmonary bacterial infections. We have shown for the first time that the absence of GPR43 leads to increased susceptibility to Klebsiella pneumoniae infection, which was associated to both uncontrolled proliferation of bacteria and to increased inflammatory response. Mechanistically, we showed that GPR43 expression especially in neutrophils and alveolar macrophages is important for bacterial phagocytosis and killing. In addition, treatment with the GPR43 ligand, acetate, is protective during bacterial lung infection. This was associated to reduction in the number of bacteria in the airways and to the control of the inflammatory responses. Altogether, GPR43 plays an important role in the "gut-lung axis" as a sensor of the host gut microbiota activity through acetate binding promoting a proper immune response in the lungs.


Subject(s)
Klebsiella Infections/immunology , Klebsiella pneumoniae , Receptors, G-Protein-Coupled/immunology , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/immunology , Macrophages, Alveolar/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Phagocytosis , Receptors, G-Protein-Coupled/genetics
3.
Mol Biochem Parasitol ; 214: 52-61, 2017 06.
Article in English | MEDLINE | ID: mdl-28356223

ABSTRACT

Protein trafficking through endo/lysosomal compartments is critically important to the biology of the protozoan parasite Trypanosoma brucei, but the routes material may take to the lysosome, as well as the molecular factors regulating those routes, remain incompletely understood. Phosphoinositides are signaling phospholipids that regulate many trafficking events by recruiting specific effector proteins to discrete membrane subdomains. In this study, we investigate the role of one phosphoinositide, PI(3,5)P2 in T. brucei. We find a low steady state level of PI(3,5)P2 in bloodstream form parasites comparable to that of other organisms. RNAi knockdown of the putative PI(3)P-5 kinase TbFab1 decreases the PI(3,5)P2 pool leading to rapid cell death. TbFab1 and PI(3,5)P2 both localize strongly to late endo/lysosomes. While most trafficking functions were intact in TbFab1 deficient cells, including both endocytic and biosynthetic trafficking to the lysosome, lysosomal turnover of an endogenous ubiquitinylated membrane protein, ISG65, was completely blocked suggesting that TbFab1 plays a role in the ESCRT-mediated late endosomal/multivesicular body degradative pathways. Knockdown of a second component of PI(3,5)P2 metabolism, the PI(3,5)P2 phosphatase TbFig4, also resulted in delayed turnover of ISG65. Together, these results demonstrate an essential role for PI(3,5)P2 in the turnover of ubiquitinylated membrane proteins and in trypanosome endomembrane biology.


Subject(s)
Endosomes/enzymology , Lysosomes/enzymology , Phosphatidylinositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Trypanosoma brucei brucei/enzymology , Endosomes/metabolism , Lysosomes/metabolism , Protein Transport , Trypanosoma brucei brucei/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL