Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Open Life Sci ; 18(1): 20220577, 2023.
Article in English | MEDLINE | ID: mdl-37589006

ABSTRACT

Most laboratory tests to detect the presence of anti-SARS-CoV-2 antibodies use enzyme-linked immunosorbent assays (ELISA) or chemiluminescence immunoassays (CLIA); however, equipment for these immunoassays is unavailable in many areas of low- and middle-income countries. Rapid lateral flow immunoassay (LFIA) tests are an equipment-free option, but their high price may make them less suitable for conducting seroprevalence surveys. Here, we describe a simple dual antigen ELISA dot-blot test to detect anti-SARS-CoV-2 IgG antibodies with high sensitivity (94-98%) and specificity (92-100%), compared to commercially available ELISA and CLIA options. Additionally, this ELISA dot-blot test can be completed in one hour using minimal laboratory equipment. Importantly, this immunoassay is significantly more affordable than most LFIA tests available on the global market. The dot-blot strips may be stored for up to 7 days under freezing conditions. This ELISA dot-blot test is a cost-effective option for conducting seroprevalence screenings in areas lacking ELISA or CLIA facilities, compared to LFIA tests.

2.
PLoS Negl Trop Dis ; 17(7): e0010439, 2023 07.
Article in English | MEDLINE | ID: mdl-37486923

ABSTRACT

Bats are important natural reservoir hosts of a diverse range of viruses that can be transmitted to humans and have been suggested to play an important role in the Zika virus (ZIKV) transmission cycle. However, the exact role of these animals as reservoirs for flaviviruses is still controversial. To further expand our understanding of the role of bats in the ZIKV transmission cycle in Latin America, we carried out an experimental infection in wild-caught Artibeus lituratus bats and sampled several free-living neotropical bats across three countries of the region. Experimental ZIKV infection was performed in wild-caught adult bats (4 females and 5 males). The most relevant findings were hemorrhages in the bladder, stomach and patagium. Significant histological findings included inflammatory infiltrate consisting of a predominance of neutrophils and lymphocytes, in addition to degeneration in the reproductive tract of males and females. This suggests that bat reproduction might be at some level affected by ZIKV. Leukopenia was also observed in some inoculated animals. Hemorrhages, genital alterations, and leukopenia are suggested to be caused by ZIKV; however, since these were wild-caught bats, we cannot exclude other agents. Detection of ZIKV by qPCR was observed at low concentrations in only two urine samples in two inoculated animals. All other animals and tissues tested were negative. Finally, no virus-neutralizing antibodies were found in any animal. To determine ZIKV infection in nature, the blood of a total of 2056 bats was sampled for ZIKV detection by qPCR. Most of the sampled individuals belonged to the genus Pteronotus sp. (23%), followed by the species Carollia sp. (17%), Anoura sp. (14%), and Molossus sp. (13.7%). No sample of any tested species was positive for ZIKV by qPCR. These results together suggest that bats are not efficient amplifiers or reservoirs of ZIKV and may not have an important role in ZIKV transmission dynamics.


Subject(s)
Chiroptera , Zika Virus Infection , Zika Virus , Animals , Female , Male , Costa Rica/epidemiology , French Guiana/epidemiology , Peru/epidemiology , Zika Virus/genetics , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary , Zika Virus Infection/diagnosis
3.
Biotechnol Rep (Amst) ; 37: e00780, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36619904

ABSTRACT

SARS-CoV-2 receptor binding domain (RBD) recognizes the angiotensin converting enzyme 2 (ACE2) receptor in host cells that enables infection. Due to its antigenic specificity, RBD production is important for development of serological assays. Here we have established a system for stable RBD production in HEK 293T mammalian cells that simultaneously express the recombinant fluorescent protein dTomato, which enables kinetic monitoring of RBD expression by fluorescence microscopy. In addition, we have validated the use of this recombinant RBD in an ELISA assay for the detection of anti-RBD antibodies in serum samples of COVID-19 convalescent patients. Recombinant RBD generated using this approach can be useful for generation of antibody-based therapeutics against SARS-CoV-2, as well serological assays aimed to test antibody responses to this relevant virus.

4.
Int J Parasitol Parasites Wildl ; 20: 63-72, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36655207

ABSTRACT

Bats are important reservoirs and spreaders of pathogens, including those of zoonotic concern. Though Costa Rica hosts one of the highest bat species' diversity, no information is available about their parasites. In order to investigate the occurrence of vector-borne pathogens (VBPs) and gastrointestinal (GI) parasites of chiropterans from this neotropical area, ectoparasites (n = 231) and stools (n = 64) were collected from 113 bats sampled in Santa Cruz (site 1) and Talamanca (site 2). Mites, fleas and ticks were morphologically and molecularly identified, as well as pathogens transmitted by vectors (VBPs, i.e., Borrelia spp., Rickettsia spp., Bartonella spp.) and from feces, such as Giardia spp., Cryptosporidium spp. and Eimeria spp. were molecularly investigated. Overall, 21 bat species belonging to 15 genera and 5 families were identified of which 42.5% were infested by ectoparasites, with a higher percentage of mites (38.9%, i.e., Cameronieta sp. and Mitonyssoides sp.) followed by flies (2.6%, i.e., Joblingia sp.) and tick larvae (1.7%, i.e., Ornithodoros sp.). Rickettsia spp. was identified in one immature tick and phylogenetically clustered with two Rickettsia species of the Spotted Fever Group (i.e., R. massiliae and R. rhipicephali). The frequency of GI parasite infection was 14%, being 3.1% of bats infected by Giardia spp. (un-identified non-duodenalis species), 1.5% by Eimeria spp. and 9.4% by Cryptosporidium spp. (bat and rodent genotypes; one C. parvum-related human genotype). The wide range of ectoparasites collected coupled with the detection of Rickettsia sp., Giardia and Cryptosporidium in bats from Costa Rica highlight the role these mammals may play as spreaders of pathogens and the need to further investigate the pathogenic potential of these parasites.

5.
Parasit Vectors ; 16(1): 34, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36703148

ABSTRACT

BACKGROUND: Mosquitoes are vectors of various arboviruses belonging to the genera Alphavirus and Flavivirus, and Costa Rica is endemic to several of them. The aim of this study was to describe and analyze the community structure of such vectors in Costa Rica. METHODS: Sampling was performed in two different coastal locations of Costa Rica with evidence of arboviral activity during rainy and dry seasons. Encephalitis vector surveillance traps, CDC female gravid traps and ovitraps were used. Detection of several arboviruses by Pan-Alpha and Pan-Flavi PCR was attempted. Blood meals were also identified. The Normalized Difference Vegetation Index (NDVI) was estimated for each area during the rainy and dry seasons. The Chao2 values for abundance and Shannon index for species diversity were also estimated. RESULTS: A total of 1802 adult mosquitoes belonging to 55 species were captured, among which Culex quinquefasciatus was the most caught species. The differences in NDVI were higher between seasons and between regions, yielding lower Chao-Sørensen similarity index values. Venezuelan equine encephalitis virus, West Nile virus and Madariaga virus were not detected at all, and dengue virus and Zika virus were detected in two separate Cx. quinquefasciatus specimens. The primary blood-meal sources were chickens (60%) and humans (27.5%). Both sampled areas were found to have different seasonal dynamics and population turnover, as reflected in the Chao2 species richness estimation values and Shannon diversity index. CONCLUSION: Seasonal patterns in mosquito community dynamics in coastal areas of Costa Rica have strong differences despite a geographical proximity. The NDVI influences mosquito diversity at the regional scale more than at the local scale. However, year-long continuous sampling is required to better understand local dynamics.


Subject(s)
Alphavirus , Arboviruses , Culex , Culicidae , Zika Virus Infection , Zika Virus , Humans , Horses , Animals , Female , Seasons , Costa Rica/epidemiology , Mosquito Vectors , Chickens
6.
Ticks Tick Borne Dis ; 14(1): 102071, 2023 01.
Article in English | MEDLINE | ID: mdl-36327901

ABSTRACT

In the past two decades, new species of Rickettsia have been detected and described worldwide, some of them considered pathogenic for humans. Although Costa Rica is considered a biodiversity hotspot, the knowledge about rickettsiae in sylvatic ecosystems and wild animals is scarce. The aim of this preliminary study was to detect and identify species of Rickettsia in ticks collected from wild animals in Costa Rica. A total 119 ticks were collected from 16 animal host species belonging to diverse vertebrate families (Didelphidae, Procyonidae, Felidae, Choloepodidae, Bradypodidae, Myrmecophagidae, Tayassuidae, Tapiridae, Phyllostomidae, Bufonidae, Geoemydidae, Boidae, Colubridae), and they were grouped into 43 pools to detect the presence of Rickettsia spp. DNA by PCR targeting the gltA gene. In positive pools, amplicons of the ompA, sca5 (ompB), and/or htrA genes were also amplified to identify the species present. The identification of some ticks was also confirmed by molecular methods. Four species of Rickettsia were detected in eight (19%) tick pools: Rickettsia amblyommatis in four pools of Amblyomma geayi (host: Caluromys derbianus) and one pool of Amblyomma cf. parvum (host: Nasua narica), Rickettsia rhipicephali in one pool of Dermacentor latus (host: Tayassu pecari), 'Candidatus Rickettsia colombianensi' in one pool of Amblyomma sp. nymphs (host: Boa constrictor), and Rickettsia sp. genotype IbR/CRC in one pool of Ixodes cf. boliviensis (host: Puma concolor). This is the first molecular detection of R. rhipicephali in Central America, and of 'Candidatus R. colombianensi' in Costa Rica. Results show that diverse wild animals and their ticks are associated with several species of rickettsiae in Costa Rica, which may come in contact with humans and other domestic animals in sylvatic environments.


Subject(s)
Rickettsia , Ticks , Humans , Animals , Ecosystem , Central America , Rickettsia/genetics
7.
PLoS One ; 17(9): e0262063, 2022.
Article in English | MEDLINE | ID: mdl-36155648

ABSTRACT

Epidemiological surveillance systems for pathogens in wild species have been proposed as a preventive measure for epidemic events. These systems can minimize the detrimental effects of an outbreak, but most importantly, passive surveillance systems are the best adapted to countries with limited resources. Therefore, this research aimed to evaluate the technical and infrastructural feasibility of establishing this type of scheme in Costa Rica by implementing a pilot program targeting the detection of pathogens of zoonotic and conservation importance in wildlife. Between 2018 and 2020, 85 carcasses of free-ranging vertebrates were admitted for post-mortem and microbiology analysis. However, we encountered obstacles mainly related to the initial identification of cases and limited local logistics capacity. Nevertheless, this epidemiological surveillance scheme allowed us to estimate the general state of health of the country's wildlife by establishing the causes of death according to pathological findings. For instance, 60% (51/85) of the deaths were not directly associated with an infectious agent. Though in 37.6% (32/85) of these cases an infectious agent associated or not with disease was detected. In 27.1% (23/85) of the cases, death was directly related to infectious agents. Furthermore, 12.9% (11/85), the cause of death was not determined. Likewise, this wildlife health monitoring program allowed the detection of relevant pathogens such as Canine Distemper Virus, Klebsiella pneumoniae, Angiostrongylus spp., Baylisascaris spp., among others. Our research demonstrated that this passive surveillance scheme is cost-effective and feasible in countries with limited resources. This passive surveillance can be adapted to the infrastructure dedicated to monitoring diseases in productive animals according to the scope and objectives of monitoring wildlife specific to each region. The information generated from the experience of the initial establishment of a WHMP is critical to meeting the challenges involved in developing this type of scheme in regions with limited resources and established as hotspots for emerging infectious diseases.


Subject(s)
Communicable Diseases, Emerging , Distemper Virus, Canine , Animals , Animals, Wild/microbiology , Costa Rica/epidemiology , Disease Outbreaks
8.
Viruses ; 14(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35062297

ABSTRACT

Arboviruses have two ecological transmission cycles: sylvatic and urban. For some, the sylvatic cycle has not been thoroughly described in America. To study the role of wildlife in a putative sylvatic cycle, we sampled free-ranging bats and birds in two arbovirus endemic locations and analyzed them using molecular, serological, and histological methods. No current infection was detected, and no significant arbovirus-associated histological changes were observed. Neutralizing antibodies were detected against selected arboviruses. In bats, positivity in 34.95% for DENV-1, 16.26% for DENV-2, 5.69% for DENV-3, 4.87% for DENV-4, 2.43% for WNV, 4.87% for SLEV, 0.81% for YFV, 7.31% for EEEV, and 0.81% for VEEV was found. Antibodies against ZIKV were not detected. In birds, PRNT results were positive against WNV in 0.80%, SLEV in 5.64%, EEEV in 8.4%, and VEEV in 5.63%. An additional retrospective PRNT analysis was performed using bat samples from three additional DENV endemic sites resulting in a 3.27% prevalence for WNV and 1.63% for SLEV. Interestingly, one sample resulted unequivocally WNV positive confirmed by serum titration. These results suggest that free-ranging bats and birds are exposed to not currently reported hyperendemic-human infecting Flavivirus and Alphavirus; however, their role as reservoirs or hosts is still undetermined.


Subject(s)
Alphavirus/immunology , Animals, Wild/immunology , Antibodies, Viral/blood , Birds/immunology , Chiroptera/immunology , Flavivirus/immunology , Seroepidemiologic Studies , Alphavirus Infections/epidemiology , Alphavirus Infections/veterinary , Animals , Antibodies, Neutralizing/blood , Bird Diseases/epidemiology , Costa Rica/epidemiology , Dengue Virus/immunology , Disease Reservoirs , Female , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Humans , Male , Neutralization Tests , Prevalence
9.
Emerg Infect Dis ; 28(2): 488-491, 2022 02.
Article in English | MEDLINE | ID: mdl-35076376

ABSTRACT

To determine Bartonella spp. dynamics, we sampled bats and bat flies across 15 roosts in Costa Rica. PCR indicated prevalence of 10.7% in bats and 29.0% in ectoparasite pools. Phylogenetic analysis of 8 sequences from bats and 5 from bat fly pools revealed 11 distinct genetic variants, including 2 potentially new genotypes.


Subject(s)
Bartonella Infections , Bartonella , Chiroptera , Animals , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Costa Rica/epidemiology , Genetic Variation , Phylogeny
10.
Pathogens ; 12(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36678356

ABSTRACT

Costa Rica harbors several flaviviruses, including Dengue (DENV), Zika (ZIKV), West Nile virus (WNV), and Saint Louis encephalitis virus (SLEV). While DENV and ZIKV are hyperendemic, previous research indicates restricted circulation of SLEV and WNV in animals. SLEV and WNV seroprevalence and high transmission areas have not yet been measured. To determine the extents of putative WNV and SLEV circulation, we sampled peri-domestic and domestic animals, humans, and mosquitoes in rural households located in two DENV and ZIKV hyperendemic regions during the rainy and dry seasons of 2017-2018 and conducted plaque reduction neutralization test assay for serology (PRNT) and RT-PCR for virus detection. In Cuajiniquil, serological evidence of WNV and SLEV was found in equines, humans, chickens, and wild birds. Additionally, five seroconversion events were recorded for WNV (2 equines), SLEV (1 human), and DENV-1 (2 humans). In Talamanca, WNV was not found, but serological evidence of SLEV circulation was recorded in equines, humans, and wild birds. Even though no active viral infection was detected, the seroconversion events recorded here indicate recent circulation of SLEV and WNV in these two regions. This study thus provides clear-cut evidence for WNV and SLEV presence in these areas, and therefore, they should be considered in arboviruses differential diagnostics and future infection prevention campaigns.

11.
Front Med (Lausanne) ; 8: 735853, 2021.
Article in English | MEDLINE | ID: mdl-34552949

ABSTRACT

SARS-CoV-2 variants of concern show reduced neutralization by vaccine-induced and therapeutic monoclonal antibodies; therefore, treatment alternatives are needed. We tested therapeutic equine polyclonal antibodies (pAbs) that are being assessed in clinical trials in Costa Rica against five globally circulating variants of concern: alpha, beta, epsilon, gamma and delta, using plaque reduction neutralization assays. We show that equine pAbs efficiently neutralize the variants of concern, with inhibitory concentrations in the range of 0.146-1.078 µg/mL, which correspond to extremely low concentrations when compared to pAbs doses used in clinical trials. Equine pAbs are an effective, broad coverage, low-cost and a scalable COVID-19 treatment.

13.
Insects ; 12(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203687

ABSTRACT

Arthropod-borne viruses belonging to the flavivirus genus possess an enormous relevance in public health. Neotropical non-human primates (NPs) have been proposed to be susceptible to flavivirus infections due to their arboreal and diurnal habits, their genetic similarity to humans, and their relative closeness to humans. However, the only known flavivirus in the American continent maintained by sylvatic cycles involving NPs is yellow fever virus (YFV), and NPs' role as potential hosts of other flaviviruses is still unknown. Here, we examined flavivirus exposure in 86 serum samples including 83.7% samples from free-range and 16.3% from captive NPs living in flavivirus-endemic regions of Costa Rica. Serum samples were opportunistically collected throughout Costa Rica in 2000-2015. We used a highly specific micro-plaque reduction neutralization test (micro-PRNT) to determine the presence of antibodies against YFV, dengue virus 1-4 (DENV), Zika virus, West Nile virus (WNV), and Saint Louis encephalitis virus (SLEV). We found evidence of seropositive NPs with homotypic reactivity to SLEV 11.6% (10/86), DENV 10.5% (9/86), and WNV 2.3% (2/86). Heterotypic reactivity was determined in 3.5% (3/86) of individuals against DENV, 1.2% (1/86) against SLEV, and 1.2% (1/86) against WNV. We found that 13.9% (12/86) of NPs were positive for an undetermined flavivirus species. No antibodies against DENV-3, DENV-4, YFV, or ZIKV were found. This work provides compelling serological evidence of flavivirus exposure in Costa Rican NPs, in particular to DENV, SLEV, and WNV. The range of years of sampling and the region from where positives were detected coincide with those in which peaks of DENV in human populations were registered, suggesting bidirectional exposure due to human-wildlife contact or bridging vectors. Our work suggests the continuous exposure of wildlife populations to various flaviviruses of public health importance and underscores the necessity of further surveillance of flaviviruses at the human-wildlife interface in Central America.

14.
Viruses ; 13(7)2021 06 22.
Article in English | MEDLINE | ID: mdl-34206483

ABSTRACT

Conventional plaque assays rely on the use of overlays to restrict viral infection allowing the formation of distinct foci that grow in time as the replication cycle continues leading to countable plaques that are visualized with standard techniques such as crystal violet, neutral red, or immunolabeling. This classical approach takes several days until large enough plaques can be visualized and counted with some variation due to subjectivity in plaque recognition. Since plaques are clonal lesions produced by virus-induced cytopathic effect, we applied DNA fluorescent dyes with differential cell permeability to visualize them by live-cell imaging. We could observe different stages of that cytopathic effect corresponding to an early wave of cells with chromatin-condensation followed by a wave of dead cells with membrane permeabilization within plaques generated by different animal viruses. This approach enables an automated plaque identification using image analysis to increase single plaque resolution compared to crystal violet counterstaining and allows its application to plaque tracking and plaque reduction assays to test compounds for both antiviral and cytotoxic activities. This fluorescent real-time plaque assay sums to those next-generation technologies by combining this robust classical method with modern fluorescence microscopy and image analysis approaches for future applications in virology.


Subject(s)
Optical Imaging/instrumentation , Optical Imaging/methods , Single-Cell Analysis/methods , Viral Plaque Assay/methods , Automation, Laboratory , Cell Line , Cytopathogenic Effect, Viral , Single-Cell Analysis/instrumentation , Viral Plaque Assay/instrumentation
15.
Emerg Infect Dis ; 27(7): 1811-1820, 2021 07.
Article in English | MEDLINE | ID: mdl-34152956

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.


Subject(s)
Animals, Wild , COVID-19 , Animals , Epithelial Cells , Humans , Respiratory System , SARS-CoV-2
16.
Sci Rep ; 11(1): 9825, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972631

ABSTRACT

In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19. We immunized two groups of horses with either S1 (anti-S1) or a mixture of S1, N, and SEM mosaic (anti-Mix) viral recombinant proteins. Horses reached a maximum anti-viral antibody level at 7 weeks following priming, and showed no major adverse acute or chronic clinical alterations. Two whole-IgG formulations were prepared via hyperimmune plasma precipitation with caprylic acid and then formulated for parenteral use. Both preparations had similar physicochemical and microbiological quality and showed ELISA immunoreactivity towards S1 protein and the receptor binding domain (RBD). The anti-Mix formulation also presented immunoreactivity against N protein. Due to high anti-S1 and anti-RBD antibody content, final products exhibited high in vitro neutralizing capacity of SARS-CoV-2 infection, 80 times higher than a pool of human convalescent plasma. Pre-clinical quality profiles were similar among both products, but clinical efficacy and safety must be tested in clinical trials. The technological strategy we describe here can be adapted by other producers, particularly in low- and middle-income countries.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Coronavirus Nucleocapsid Proteins/immunology , Horses/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Immunization/methods , Immunization, Passive/methods , Immunoglobulin G/immunology , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
17.
Infect Genet Evol ; 92: 104872, 2021 08.
Article in English | MEDLINE | ID: mdl-33905892

ABSTRACT

Genome sequencing is a key strategy in the surveillance of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Latin America is the hardest-hit region of the world, accumulating almost 20% of COVID-19 cases worldwide. In Costa Rica, from the first detected case on March 6th to December 31st almost 170,000 cases have been reported. We analyzed the genomic variability during the SARS-CoV-2 pandemic in Costa Rica using 185 sequences, 52 from the first months of the pandemic, and 133 from the current wave. Three GISAID clades (G, GH, and GR) and three PANGOLIN lineages (B.1, B.1.1, and B.1.291) were predominant, suggesting multiple re-introductions from other regions. The whole-genome variant calling analysis identified a total of 283 distinct nucleotide variants, following a power-law distribution with 190 single nucleotide mutations in a single sequence, and only 16 mutations were found in >5% sequences. These mutations were distributed through the whole genome. The prevalence of worldwide-found variant D614G in the Spike (98.9% in Costa Rica), ORF8 L84S (1.1%) is similar to what is found elsewhere. Interestingly, the frequency of mutation T1117I in the Spike has increased during the current pandemic wave beginning in May 2020 in Costa Rica, reaching 29.2% detection in the full genome analyses in November 2020. This variant has been observed in less than 1% of the GISAID reported sequences worldwide in 2020. Structural modeling of the Spike protein with the T1117I mutation suggests a potential effect on the viral oligomerization needed for cell infection, but no differences with other genomes on transmissibility, severity nor vaccine effectiveness are predicted. In conclusion, genome analyses of the SARS-CoV-2 sequences over the course of the COVID-19 pandemic in Costa Rica suggest the introduction of lineages from other countries and the detection of mutations in line with other studies, but pointing out the local increase in the detection of Spike-T1117I variant. The genomic features of this virus need to be monitored and studied in further analyses as part of the surveillance program during the pandemic.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genetic Variation , Genomics , SARS-CoV-2/genetics , Costa Rica/epidemiology , Female , Humans , Male , Models, Molecular , Mutation , Phylogeny , Population Surveillance , Protein Conformation , Spike Glycoprotein, Coronavirus/genetics
18.
Front Res Metr Anal ; 6: 664880, 2021.
Article in English | MEDLINE | ID: mdl-33912788

ABSTRACT

Science diplomacy is a fast-growing field of research, policy, and practice dedicated to understanding and reinforcing the connections between science and international affairs to tackle national, regional, and global issues. By aligning science and diplomacy, countries can attract talent, strengthen their national research ecosystems, provide avenues for participation of scientists in policy, and coordinate integrated solutions to challenges with technical dimensions. While Latin America has a long tradition of bilateral and regional cooperation, science still plays a marginal role in foreign policy, as has become evidenced by the response to the COVID-19 pandemic. With few exceptions, Latin American nations have a relatively immature science, technology, and innovation ecosystem, compounded by low public and private investments in research, coexisting with profound socio-economic inequalities, and large vulnerable populations. Such challenging conditions have created barriers to a fluid relationship between science and diplomacy, fundamentally characterized by inefficient communication between scientists and policymakers, weak collaboration channels, and duplicated roles, which altogether perpetuate siloed mentalities and a lack of trust between the two communities. Over the last decade, a first influential wave of Latin American scientists, diplomats, and other professionals, including five of the co-authors, have undertaken science diplomacy training provided by specialized organizations. Through these experiences, we recognized the need to elevate awareness and build capacities in science diplomacy in our respective countries and overall, across Latin America. Here, we describe emerging efforts and mechanisms to bridge the gap between scientists and policymakers at the national and regional level. Furthermore, we offer recommendations to amplify the impact of those pioneering initiatives toward consolidating a robust science diplomacy practice across the region. The national experiences described from Costa Rica, Mexico, and Panama can serve as a roadmap for other Latin American nations in the early process of developing a science diplomacy strategy, so they can also align themselves to a collective pathway. Most critically, we propose a way forward so that Latin America can leapfrog beyond disjointed training of individuals into integrated institutional strategies that can harness the tools of science diplomacy to enhance science-informed multilateral cooperation and enable more effective science-informed policymaking.

20.
Virus Evol ; 6(2): veaa033, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32704383

ABSTRACT

The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.

SELECTION OF CITATIONS
SEARCH DETAIL
...