Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Virol J ; 12: 123, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26260343

ABSTRACT

BACKGROUND: The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD). METHODS: CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0's silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves. RESULTS: High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery. CONCLUSIONS: The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins.


Subject(s)
Gossypium/virology , Luteoviridae/metabolism , Plant Diseases/virology , Viral Proteins/metabolism , Brazil , Gene Expression , Gene Silencing , Genes, Reporter , Genetic Variation , Geography , Luteoviridae/classification , Luteoviridae/genetics , Luteoviridae/isolation & purification , Phylogeny , Plants, Genetically Modified , Viral Proteins/genetics
2.
Genet Mol Biol ; 37(4): 671-82, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25505842

ABSTRACT

As microRNAs (miRNAs) are important regulators of many biological processes, a series of small RNAomes from plants have been produced in the last decade. However, miRNA data from several groups of plants are still lacking, including some economically important crops. Here microRNAs from Coffea canephora leaves were profiled and 58 unique sequences belonging to 33 families were found, including two novel microRNAs that have never been described before in plants. Some of the microRNA sequences were also identified in Coffea arabica that, together with C. canephora, correspond to the two major sources of coffee production in the world. The targets of almost all miRNAs were also predicted on coffee expressed sequences. This is the first report of novel miRNAs in the genus Coffea, and also the first in the plant order Gentianales. The data obtained establishes the basis for the understanding of the complex miRNA-target network on those two important crops.

3.
Plant Mol Biol ; 80(4-5): 443-60, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22987114

ABSTRACT

Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.


Subject(s)
DNA Transposable Elements , Gossypium/genetics , Luteoviridae/pathogenicity , MicroRNAs/genetics , RNA, Plant/genetics , Base Sequence , DNA Primers , Gossypium/virology , Real-Time Polymerase Chain Reaction
4.
BMC Mol Biol ; 12: 40, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21864377

ABSTRACT

BACKGROUND: In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. RESULTS: Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. CONCLUSIONS: This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.


Subject(s)
Gossypium/genetics , Gossypium/virology , Luteoviridae/genetics , Plant Diseases/genetics , Plant Diseases/virology , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , Genome, Plant , Genome, Viral , Luteoviridae/metabolism , Luteoviridae/pathogenicity , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Viral/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism
5.
Bioinformatics ; 21(10): 2566-7, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15713730

ABSTRACT

UNLABELLED: MamMiBase, the mammalian mitochondrial genome database, is a relational database of complete mitochondrial genome sequences of mammalian species. The database is useful for phylogenetic analysis, since it allows a ready retrieval of nucleotide and aminoacid individual alignments, in three different formats (NEXUS for PAUP program, for MEGA program and for PHYLIP program) of the 13 protein coding mitochondrial genes. The user may download the sequences that are useful for him/her based on their parameters values, such as sequence length, p-distances, base content, transition transversion ratio, gamma, which are also given by MamMiBase. A simple phylogenetic tree (neighbor-joining tree with Jukes Cantor distance) is also available for download, useful for parameter calculations and other simple tasks. AVAILABILITY: MamMiBase is available at http://www.mammibase.lncc.br


Subject(s)
Chromosome Mapping/methods , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Databases, Nucleic Acid , Phylogeny , Sequence Alignment/methods , Sequence Analysis, DNA/methods , User-Computer Interface , Internet
6.
Genet Mol Res ; 4(4): 790-802, 2005 Dec 30.
Article in English | MEDLINE | ID: mdl-16475127

ABSTRACT

The coat protein (CP) of the family Luteoviridae is directly associated with the success of infection. It participates in various steps of the virus life cycle, such as virion assembly, stability, systemic infection, and transmission. Despite its importance, extensive studies on the molecular evolution of this protein are lacking. In the present study, we investigate the action of differential selective forces on the CP coding region using maximum likelihood methods. We found that the protein is subjected to heterogeneous selective pressures and some sites may be evolving near neutrality. Based on the proposed 3-D model of the CP S-domain, we showed that nearly neutral sites are predominantly located in the region of the protein that faces the interior of the capsid, in close contact with the viral RNA, while highly conserved sites are mainly part of beta-strands, in the protein's major framework.


Subject(s)
Capsid Proteins/genetics , Genome, Viral , Imaging, Three-Dimensional/methods , Luteovirus/genetics , Models, Genetic , Codon/genetics , Image Interpretation, Computer-Assisted , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL