Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3626, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351227

ABSTRACT

Mental disorders are complex disorders influenced by multiple genetic, environmental, and biological factors. Specific microbiota imbalances seem to affect mental health status. However, the mechanisms by which microbiota disturbances impact the presence of depression, stress, anxiety, and eating disorders remain poorly understood. Currently, there are no robust biomarkers identified. We proposed a novel pyramid-layer design to accurately identify microbial/metabolomic signatures underlying mental disorders in the TwinsUK registry. Monozygotic and dizygotic twins discordant for mental disorders were screened, in a pairwise manner, for differentially abundant bacterial genera and circulating metabolites. In addition, multivariate analyses were performed, accounting for individual-level confounders. Our pyramid-layer study design allowed us to overcome the limitations of cross-sectional study designs with significant confounder effects and resulted in an association of the abundance of genus Parabacteroides with the diagnosis of mental disorders. Future research should explore the potential role of Parabacteroides as a mediator of mental health status. Our results indicate the potential role of the microbiome as a modifier in mental disorders that might contribute to the development of novel methodologies to assess personal risk and intervention strategies.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders , Microbiota , Humans , Cohort Studies , Cross-Sectional Studies
2.
Bioinformatics ; 38(10): 2920-2921, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35561201

ABSTRACT

SUMMARY: Missing regions in short-read assemblies of prokaryote genomes are often attributed to biases in sequencing technologies and to repetitive elements, the former resulting in low sequencing coverage of certain loci and the latter to unresolved loops in the de novo assembly graph. We developed SASpector, a command-line tool that compares short-read assemblies (draft genomes) to their corresponding closed assemblies and extracts missing regions to analyze them at the sequence and functional level. SASpector allows to benchmark the need for resolved genomes, can be integrated into pipelines to control the quality of assemblies, and could be used for comparative investigations of missingness in assemblies for which both short-read and long-read data are available in the public databases. AVAILABILITY AND IMPLEMENTATION: SASpector is available at https://github.com/LoGT-KULeuven/SASpector. The tool is implemented in Python3 and available through pip and Docker (0mician/saspector). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , Genome , Genomics , Sequence Analysis, DNA
3.
Front Physiol ; 12: 723510, 2021.
Article in English | MEDLINE | ID: mdl-34512391

ABSTRACT

Precision medicine as a framework for disease diagnosis, treatment, and prevention at the molecular level has entered clinical practice. From the start, genetics has been an indispensable tool to understand and stratify the biology of chronic and complex diseases in precision medicine. However, with the advances in biomedical and omics technologies, quantitative proteomics is emerging as a powerful technology complementing genetics. Quantitative proteomics provide insight about the dynamic behaviour of proteins as they represent intermediate phenotypes. They provide direct biological insights into physiological patterns, while genetics accounting for baseline characteristics. Additionally, it opens a wide range of applications in clinical diagnostics, treatment stratification, and drug discovery. In this mini-review, we discuss the current status of quantitative proteomics in precision medicine including the available technologies and common methods to analyze quantitative proteomics data. Furthermore, we highlight the current challenges to put quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data with genomics data for future applications in precision medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...