Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Biophys Mol Biol ; 157: 84-93, 2020 11.
Article in English | MEDLINE | ID: mdl-31899215

ABSTRACT

BACKGROUND: Cardiac optical mapping enables direct and high spatio-temporal resolution recording of action potential (AP) morphology. Temporal alterations in AP morphology are both predictive and consequent of arrhythmia. Here we sought to test if methods that quantify regularity of recorded waveforms could be applied to detect and quantify periods of temporal instability in optical mapping datasets in a semi-automated, user-unbiased manner. METHODS AND RESULTS: We developed, tested and applied algorithms to quantify optical wave similarity (OWS) to study morphological temporal similarity of optically recorded APs. Unlike other measures (e.g. alternans ratio, beat-to-beat variability, arrhythmia scoring), the quantification of OWS is achieved without a restrictive definition of specific signal points/features and is instead derived by analysing the complete morphology from the entire AP waveform. Using model datasets, we validated the ability of OWS to measure changes in AP morphology, and tested OWS mapping in guinea pig hearts and mouse atria. OWS successfully detected and measured alterations in temporal regularity in response to several proarrhythmic stimuli, including alterations in pacing frequency, premature contractions, alternans and ventricular fibrillation. CONCLUSION: OWS mapping provides an effective measure of temporal regularity that can be applied to optical datasets to detect and quantify temporal alterations in action potential morphology. This methodology provides a new metric for arrhythmia inducibility and scoring in optical mapping datasets.


Subject(s)
Action Potentials/physiology , Arrhythmias, Cardiac/physiopathology , Heart Atria/physiopathology , Ventricular Fibrillation/physiopathology , Algorithms , Animals , Guinea Pigs , Heart/physiology , Mice , Normal Distribution , Optics and Photonics , Time Factors
2.
Blood ; 131(10): 1122-1144, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29301754

ABSTRACT

Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, but it remains unclear how they are regulated. Here, we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)- and hemi-ITAM-containing receptors glycoprotein VI (GPVI)-Fc receptor (FcR) γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from occurring.


Subject(s)
Blood Platelets/metabolism , Homeostasis , Thrombosis/metabolism , src-Family Kinases/metabolism , Amino Acid Motifs , Animals , Blood Platelets/pathology , CSK Tyrosine-Protein Kinase , Mice , Mice, Knockout , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Thrombosis/genetics , src-Family Kinases/genetics
3.
Int J Antimicrob Agents ; 48(1): 69-77, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27289450

ABSTRACT

The fungal pathogen Cryptococcus neoformans poses a major threat to immunocompromised patients and is a leading killer of human immunodeficiency virus (HIV)-infected patients worldwide. Cryptococci are known to manipulate host macrophages and can either remain latent or proliferate intracellularly within the host phagocyte, a favourable niche that also renders them relatively insensitive to antifungal agents. Here we report an attempt to address this limitation by using a fluorescence-based drug screening method to identify potential inhibitors of intracellular proliferation of C. neoformans. The Prestwick Chemical Library(®) of FDA-approved small molecules was screened for compounds that limit the intracellular replication of a fluorescently-tagged C. neoformans reference strain (H99-GFP) in macrophages. Preliminary screening revealed 19 of 1200 compounds that could significantly reduce intracellular growth of the pathogen. Secondary screening and host cell cytotoxicity assays highlighted fendiline hydrochloride as a potential drug candidate for the development of future anticryptococcal therapies. Live cell imaging demonstrated that this Ca(2+) channel blocker strongly enhanced phagosome maturation in macrophages leading to improved fungal killing and reduced intracellular replication. Whilst the relatively high dose of fendiline hydrochloride required renders it unfit for clinical deployment against cryptococcosis, this study highlights a novel approach for identifying new lead compounds and unravels a pharmacologically promising scaffold towards the development of novel antifungal therapies for this neglected disease.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Cytological Techniques/methods , Drug Evaluation, Preclinical/methods , Macrophages/microbiology , Animals , Cell Line , Cell Survival/drug effects , Mice
4.
Antimicrob Agents Chemother ; 59(11): 6968-74, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26324263

ABSTRACT

Mucormycosis is a fatal fungal disease caused by several organisms within the order Mucorales. In recent years, traumatic injury has emerged as a novel risk factor for mucormycosis. Current antifungal therapy is ineffective, expensive, and typically requires extensive surgical debridement. There is thus a pressing need for safe prophylactic treatment that can be rapidly and easily applied to high-risk patients, such as those with major trauma injuries. Acetic acid has been used as a topical treatment for burn wounds for centuries and has proven activity against Gram-negative bacteria. Here, we demonstrate that acetic acid is also highly effective against major pathogenic groups of Mucorales, even at very low concentrations (0.3%). This antifungal effect is not seen with other acids, such as hydrochloric and lactic acid, suggesting that acetic acid activity against Mucorales spores is not solely evoked by low environmental pH. In agreement with this, we demonstrate that the antifungal activity of acetic acid arises from a combination of its ability to potently lower intracellular pH and from pH-independent toxicity. Thus, dilute acetic acid may offer a low-cost, safe, prophylactic treatment for patients at risk of invasive mucormycosis following traumatic injury.


Subject(s)
Mucormycosis/drug therapy , Antifungal Agents/therapeutic use , Humans , Hydrochloric Acid/therapeutic use , Hydrogen-Ion Concentration , Lactic Acid/therapeutic use , Mucorales/drug effects , Mucorales/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...