Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Space Sci Rev ; 218(2): 6, 2022.
Article in English | MEDLINE | ID: mdl-35400764

ABSTRACT

The Psyche mission's Oxidation-Reduction Working Group is focused on understanding, determining, and applying the redox state of (16) Psyche to understand the origin of a metal-rich world. The oxidation-reduction state of an asteroid, along with its temperature, parent body size, and composition, is a key parameter in determining the history of an asteroid. Determining the redox state from spacecraft data is most easily done by examining potential metal-oxide buffer pairs. The occurrence of Ni, Fe, C, Cr, P and Si, in that order, in the metal or sulfide phase of an asteroidal body indicates increasingly reduced conditions. Key observations by the Imager and Gamma-Ray and Neutron Spectrometer (GRNS) of Psyche can bracket the redox state using metal-oxide buffers. The presence of Fe,Ni metal can be confirmed by the ratios of Fe/O or Fe/Si and the concentration of Ni variability in metal across the asteroid can be determined by GRNS. The FeO concentration of silicates is complementary to the Ni concentration of metal and can be constrained using filters on the Imager. The presence of FeO in silicates from ground-based observations is one of the few measurements we already have of redox state, although available data permit a wide range of silicate compositions and mineralogies. The presence of C, P or Si concentrated in the metallic, Fe-rich portion of the asteroid, as measured by GRNS, or Ca-sulfide, determined by imaging, would indicate increasingly reducing conditions. Linkage to known types of meteorites, whether metal-rich chondrites, stony-irons or irons, expands the mineralogical, chemical and isotopic data not available from remote observations alone. Redox also controls both silicate and metal mineralogy, influencing differentiation, solidification, and subsolidus cooling, including the relative abundance of sulfur in the core and possible magnetic signatures. The redox state of Psyche, if a fully-differentiated metallic core, might constrain the location and timing of both the formation of Psyche and any oxidation it might have experienced.

2.
Proc Natl Acad Sci U S A ; 112(2): 336-41, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25535348

ABSTRACT

Carbonate minerals provide critical information for defining atmosphere-hydrosphere interactions. Carbonate minerals in the Martian meteorite ALH 84001 have been dated to ∼ 3.9 Ga, and both C and O-triple isotopes can be used to decipher the planet's climate history. Here we report Δ(17)O, δ(18)O, and δ(13)C data of ALH 84001 of at least two varieties of carbonates, using a stepped acid dissolution technique paired with ion microprobe analyses to specifically target carbonates from distinct formation events and constrain the Martian atmosphere-hydrosphere-geosphere interactions and surficial aqueous alterations. These results indicate the presence of a Ca-rich carbonate phase enriched in (18)O that formed sometime after the primary aqueous event at 3.9 Ga. The phases showed excess (17)O (0.7‰) that captured the atmosphere-regolith chemical reservoir transfer, as well as CO2, O3, and H2O isotopic interactions at the time of formation of each specific carbonate. The carbon isotopes preserved in the Ca-rich carbonate phase indicate that the Noachian atmosphere of Mars was substantially depleted in (13)C compared with the modern atmosphere.

3.
Proc Natl Acad Sci U S A ; 108(48): 19159-64, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-21969535

ABSTRACT

Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.


Subject(s)
Evolution, Planetary , Extraterrestrial Environment/chemistry , Mars , Meteoroids , Space Flight/methods , Space Flight/trends
4.
Neurorehabil Neural Repair ; 23(6): 569-78, 2009.
Article in English | MEDLINE | ID: mdl-19155351

ABSTRACT

BACKGROUND: Surface electrical stimulation (ES) has been shown to improve the motor impairment of stroke survivors. However, surface ES can be painful and motor activation can be inconsistent from session to session. Percutaneous intramuscular ES may be an effective alternative. OBJECTIVE: Evaluate the effectiveness of percutaneous intramuscular ES in facilitating the recovery of the hemiparetic upper limb of chronic stroke survivors. METHODS: A total of 26 chronic stroke survivors were randomly assigned to percutaneous intramuscular ES for hand opening (n = 13) or percutaneous ES for sensory stimulation only (n = 13). The intramuscular ES group received cyclic, electromyography (EMG)-triggered or EMG-controlled ES depending on baseline motor status. All participants received 1 hour of stimulation per day for 6 weeks. After completion of ES, participants received 18 hours of task-specific functional training. The primary outcome measure was the Fugl-Meyer Motor Assessment. Secondary measures included the Arm Motor Ability Test and delay and termination of EMG activity. Outcomes were assessed in a blinded manner at baseline, at the end of ES, at the end of functional training, and at 1, 3, and 6 months follow-up. RESULTS: Repeated measure analysis of variance did not yield any significant treatment, or time by treatment interaction effects for any of the outcome measures. CONCLUSION: Percutaneous intramuscular ES does not appear to be any more effective than sensory ES in enhancing the recovery of the hemiparetic upper limb among chronic stroke survivors. However, because of the exploratory nature of the study and its inherent limitations, conclusions must be drawn with caution.


Subject(s)
Electric Stimulation Therapy/methods , Muscle Strength , Paresis/rehabilitation , Stroke Rehabilitation , Stroke/complications , Upper Extremity/physiopathology , Aged , Chronic Disease , Electric Stimulation Therapy/statistics & numerical data , Electromyography , Female , Hand , Humans , Male , Middle Aged , Paresis/etiology , Paresis/physiopathology , Recovery of Function , Stroke/physiopathology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...