Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
medRxiv ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38633784

ABSTRACT

Background and Objectives: TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN mutation carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study is to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in sporadic FTD patients. Methods: Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic mutation in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic non-mutation carriers, and non-carrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex and CDR®+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. Results: The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN mutation carriers under the recessive dosage model. This was most pronounced in the thalamus in the left hemisphere, with a retained association when considering presymptomatic GRN mutation carriers only. The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 mutation carriers and in presymptomatic C9orf72 mutation carriers, under the recessive dosage model. Discussion: We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 mutations. This further supports TMEM106B as modifier of TDP-43 pathology. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 mutation carriers could additionally reflect TMEM106B's impact on divergent pathophysiological changes before the appearance of clinical symptoms.

2.
JAMA Neurol ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619853

ABSTRACT

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.

3.
Cortex ; 173: 234-247, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432175

ABSTRACT

Previous studies have reported a pattern of hyperactivation in the pre-dementia phase of Alzheimer's disease (AD), followed by hypoactivation in later stages of the disease. This pattern was modeled as an inverse U-shape function between activation and markers of disease severity. In this study, we used quantile regression to model the association between task-related brain activation in AD signature regions and three markers of disease severity (hippocampal volume, cortical thickness, and associative memory). This approach offers distinct advantages over standard regression models as it analyzes the relationship between brain activation and disease severity across various levels of brain activation. Participants were 54 older adults with subjective cognitive decline+ (SCD+) or mild cognitive impairment (MCI) from the CIMA-Q cohort. The analysis revealed an inverse U-shape quadratic function depicting the relationship between disease severity markers and the activation of the left superior parietal region, while a linear relationship was observed for activation of the hippocampal and temporal regions. Quantile differences were observed for temporal and parietal activation, with more pronounced effects observed in the higher quantiles of activation. When comparing quantiles, we found that higher quantile of activation featured a greater number of individuals with SCD+ compared to mild cognitive impairment (MCI). Results are globally consistent with the presence of an inverse-U shape function of activation in relation to disease severity. They study also underscores the utility of employing quantile regression modeling as the modeling approach revealed the presence of non-homogeneous effects across various quantiles.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Magnetic Resonance Imaging/methods , Brain , Patient Acuity
4.
Article in English | MEDLINE | ID: mdl-38514176

ABSTRACT

BACKGROUND: Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction. METHODS: We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database. RESULTS: PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies. CONCLUSIONS: Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.

5.
Brain Commun ; 6(2): fcae005, 2024.
Article in English | MEDLINE | ID: mdl-38444909

ABSTRACT

Disruption of the default mode network is a hallmark of Alzheimer's disease, which has not been extensively examined in atypical phenotypes. We investigated cross-sectional and 1-year longitudinal changes in default mode network sub-systems in the visual and language variants of Alzheimer's disease, in relation to age and tau. Sixty-one amyloid-positive Alzheimer's disease participants diagnosed with posterior cortical atrophy (n = 33) or logopenic progressive aphasia (n = 28) underwent structural MRI, resting-state functional MRI and [18F]flortaucipir PET. One-hundred and twenty-two amyloid-negative cognitively unimpaired individuals and 60 amyloid-positive individuals diagnosed with amnestic Alzheimer's disease were included as controls and as a comparison group, respectively, and had structural and resting-state functional MRI. Forty-one atypical Alzheimer's disease participants, 26 amnestic Alzheimer's disease participants and 40 cognitively unimpaired individuals had one follow-up functional MRI ∼1-2 years after the baseline scan. Default mode network connectivity was calculated using the dual regression method for posterior, ventral, anterior ventral and anterior dorsal sub-systems derived from independent component analysis. A global measure of default mode network connectivity, the network failure quotient, was also calculated. Linear mixed-effects models and voxel-based analyses were computed for each connectivity measure. Both atypical and amnestic Alzheimer's disease participants had lower cross-sectional posterior and ventral and higher anterior dorsal connectivity and network failure quotient relative to cognitively unimpaired individuals. Age had opposite effects on connectivity in Alzheimer's disease participants and cognitively unimpaired individuals. While connectivity declined with age in cognitively unimpaired individuals, younger Alzheimer's disease participants had lower connectivity than the older ones, particularly in the ventral default mode network. Greater baseline tau-PET uptake was associated with lower ventral and anterior ventral default mode network connectivity in atypical Alzheimer's disease. Connectivity in the ventral default mode network declined over time in atypical Alzheimer's disease, particularly in older participants, with lower tau burden. Voxel-based analyses validated the findings of higher anterior dorsal default mode network connectivity, lower posterior and ventral default mode network connectivity and decline in ventral default mode network connectivity over time in atypical Alzheimer's disease. Visuospatial symptoms were associated with default mode network connectivity disruption. In summary, default mode connectivity disruption was similar between atypical and amnestic Alzheimer's disease variants, and discriminated Alzheimer's disease from cognitively unimpaired individuals, with decreased posterior and increased anterior connectivity and with disruption more pronounced in younger participants. The ventral default mode network declined over time in atypical Alzheimer's disease, suggesting a shift in default mode network connectivity likely related to tau pathology.

6.
Neurobiol Aging ; 134: 135-145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091751

ABSTRACT

We assessed white matter (WM) integrity in MAPT mutation carriers (16 asymptomatic, 5 symptomatic) compared to 31 non-carrier family controls using diffusion tensor imaging (DTI) (fractional anisotropy; FA, mean diffusivity; MD) and neurite orientation dispersion and density imaging (NODDI) (neurite density index; NDI, orientation and dispersion index; ODI). Linear mixed-effects models accounting for age and family relatedness revealed alterations across DTI and NODDI metrics in all mutation carriers and in symptomatic carriers, with the most significant differences involving fronto-temporal WM tracts. Asymptomatic carriers showed higher entorhinal MD and lower cingulum FA and patterns of higher ODI mostly involving temporal areas and long association and projections fibers. Regression models between estimated time to or time from disease and DTI and NODDI metrics in key regions (amygdala, cingulum, entorhinal, inferior temporal, uncinate fasciculus) in all carriers showed increasing abnormalities with estimated time to or time from disease onset, with FA and NDI showing the strongest relationships. Neurite-based metrics, particularly ODI, appear to be particularly sensitive to early WM involvement in asymptomatic carriers.


Subject(s)
Heterozygote , Neurites , White Matter , tau Proteins , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Mutation , White Matter/diagnostic imaging , Humans , tau Proteins/genetics
7.
Brain ; 147(3): 980-995, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37804318

ABSTRACT

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Subject(s)
Artificial Intelligence , Deep Learning , Neuroimaging , Tauopathies , Humans , Amyloidogenic Proteins , Biomarkers , Fluorodeoxyglucose F18 , Neuroimaging/methods , Tauopathies/diagnostic imaging
8.
Brain ; 147(4): 1483-1496, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37831661

ABSTRACT

There is a longstanding ambiguity regarding the clinical diagnosis of dementia syndromes predominantly targeting executive functions versus behaviour and personality. This is due to an incomplete understanding of the macro-scale anatomy underlying these symptomatologies, a partial overlap in clinical features and the fact that both phenotypes can emerge from the same pathology and vice versa. We collected data from a patient cohort of which 52 had dysexecutive Alzheimer's disease, 30 had behavioural variant frontotemporal dementia (bvFTD), seven met clinical criteria for bvFTD but had Alzheimer's disease pathology (behavioural Alzheimer's disease) and 28 had amnestic Alzheimer's disease. We first assessed group-wise differences in clinical and cognitive features and patterns of fluorodeoxyglucose (FDG) PET hypometabolism. We then performed a spectral decomposition of covariance between FDG-PET images to yield latent patterns of relative hypometabolism unbiased by diagnostic classification, which are referred to as 'eigenbrains'. These eigenbrains were subsequently linked to clinical and cognitive data and meta-analytic topics from a large external database of neuroimaging studies reflecting a wide range of mental functions. Finally, we performed a data-driven exploratory linear discriminant analysis to perform eigenbrain-based multiclass diagnostic predictions. Dysexecutive Alzheimer's disease and bvFTD patients were the youngest at symptom onset, followed by behavioural Alzheimer's disease, then amnestic Alzheimer's disease. Dysexecutive Alzheimer's disease patients had worse cognitive performance on nearly all cognitive domains compared with other groups, except verbal fluency which was equally impaired in dysexecutive Alzheimer's disease and bvFTD. Hypometabolism was observed in heteromodal cortices in dysexecutive Alzheimer's disease, temporo-parietal areas in amnestic Alzheimer's disease and frontotemporal areas in bvFTD and behavioural Alzheimer's disease. The unbiased spectral decomposition analysis revealed that relative hypometabolism in heteromodal cortices was associated with worse dysexecutive symptomatology and a lower likelihood of presenting with behaviour/personality problems, whereas relative hypometabolism in frontotemporal areas was associated with a higher likelihood of presenting with behaviour/personality problems but did not correlate with most cognitive measures. The linear discriminant analysis yielded an accuracy of 82.1% in predicting diagnostic category and did not misclassify any dysexecutive Alzheimer's disease patient for behavioural Alzheimer's disease and vice versa. Our results strongly suggest a double dissociation in that distinct macro-scale underpinnings underlie predominant dysexecutive versus personality/behavioural symptomatology in dementia syndromes. This has important implications for the implementation of criteria to diagnose and distinguish these diseases and supports the use of data-driven techniques to inform the classification of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Alzheimer Disease/pathology , Fluorodeoxyglucose F18 , Frontotemporal Dementia/pathology , Executive Function , Cerebral Cortex/pathology , Neuropsychological Tests
9.
Neuroimage Clin ; 41: 103559, 2024.
Article in English | MEDLINE | ID: mdl-38147792

ABSTRACT

Genetic mutations causative of frontotemporal lobar degeneration (FTLD) are highly predictive of a specific proteinopathy, but there exists substantial inter-individual variability in their patterns of network degeneration and clinical manifestations. We collected clinical and 18Fluorodeoxyglucose-positron emission tomography (FDG-PET) data from 39 patients with genetic FTLD, including 11 carrying the C9orf72 hexanucleotide expansion, 16 carrying a MAPT mutation and 12 carrying a GRN mutation. We performed a spectral covariance decomposition analysis between FDG-PET images to yield unbiased latent patterns reflective of whole brain patterns of metabolism ("eigenbrains" or EBs). We then conducted linear discriminant analyses (LDAs) to perform EB-based predictions of genetic mutation and predominant clinical phenotype (i.e., behavior/personality, language, asymptomatic). Five EBs were significant and explained 58.52 % of the covariance between FDG-PET images. EBs indicative of hypometabolism in left frontotemporal and temporo-parietal areas distinguished GRN mutation carriers from other genetic mutations and were associated with predominant language phenotypes. EBs indicative of hypometabolism in prefrontal and temporopolar areas with a right hemispheric predominance were mostly associated with predominant behavioral phenotypes and distinguished MAPT mutation carriers from other genetic mutations. The LDAs yielded accuracies of 79.5 % and 76.9 % in predicting genetic status and predominant clinical phenotype, respectively. A small number of EBs explained a high proportion of covariance in patterns of network degeneration across FTLD-related genetic mutations. These EBs contained biological information relevant to the variability in the pathophysiological and clinical aspects of genetic FTLD, and for offering valuable guidance in complex clinical decision-making, such as decisions related to genetic testing.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Fluorodeoxyglucose F18 , Intercellular Signaling Peptides and Proteins/genetics , Progranulins/genetics , Frontotemporal Lobar Degeneration/diagnostic imaging , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Positron-Emission Tomography , Mutation/genetics , Phenotype
10.
medRxiv ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38045300

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a neuropathologically-defined disease that affects 40% of persons in advanced age, but its associated neurological syndrome is not defined. LATE neuropathological changes (LATE-NC) are frequently comorbid with Alzheimer's disease neuropathologic changes (ADNC). When seen in isolation, LATE-NC have been associated with a predominantly amnestic profile and slow clinical progression. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome (LANS) that is highly associated with LATE-NC but also other pathologic entities. The LANS criteria incorporate core, standard and advanced features that are measurable in vivo, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degenerative patterns and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate, low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic (n = 922) and ADNI (n = 93) cohorts and applied the LANS criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; ADNI, n = 53). ADNC, ADNC/LATE-NC and LATE-NC accounted for 35%, 37% and 4% of cases in the Mayo cohort, respectively, and 30%, 22%, and 9% of cases in the ADNI cohort, respectively. The LANS criteria effectively categorized these cases, with ADNC having the lowest LANS likelihoods, LATE-NC patients having the highest likelihoods, and ADNC/LATE-NC patients having intermediate likelihoods. A logistic regression model using the LANS features as predictors of LATE-NC achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in the ADNI cohort achieved a balanced accuracy of 73.3%. Patients with high LANS likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying ADNC/LATE-NC patients from the Mayo cohort according to their LANS likelihood revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of cognitive decline, and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of cognitive decline. The implementation of LANS criteria has implications to disambiguate the different driving etiologies of progressive amnestic presentations in older age and guide prognosis, treatment, and clinical trials. The development of in vivo biomarkers specific to TDP-43 pathology are needed to refine molecular associations between LANS and LATE-NC and precise antemortem diagnoses of LATE.

11.
Nat Rev Neurosci ; 24(10): 620-639, 2023 10.
Article in English | MEDLINE | ID: mdl-37620599

ABSTRACT

Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine.


Subject(s)
Connectome , Neurodegenerative Diseases , Humans , Precision Medicine , Brain , Neuroimaging
12.
Brain Commun ; 5(2): fcad058, 2023.
Article in English | MEDLINE | ID: mdl-37013176

ABSTRACT

From a complex systems perspective, clinical syndromes emerging from neurodegenerative diseases are thought to result from multiscale interactions between aggregates of misfolded proteins and the disequilibrium of large-scale networks coordinating functional operations underpinning cognitive phenomena. Across all syndromic presentations of Alzheimer's disease, age-related disruption of the default mode network is accelerated by amyloid deposition. Conversely, syndromic variability may reflect selective neurodegeneration of modular networks supporting specific cognitive abilities. In this study, we leveraged the breadth of the Human Connectome Project-Aging cohort of non-demented individuals (N = 724) as a normative cohort to assess the robustness of a biomarker of default mode network dysfunction in Alzheimer's disease, the network failure quotient, across the aging spectrum. We then examined the capacity of the network failure quotient and focal markers of neurodegeneration to discriminate patients with amnestic (N = 8) or dysexecutive (N = 10) Alzheimer's disease from the normative cohort at the patient level, as well as between Alzheimer's disease phenotypes. Importantly, all participants and patients were scanned using the Human Connectome Project-Aging protocol, allowing for the acquisition of high-resolution structural imaging and longer resting-state connectivity acquisition time. Using a regression framework, we found that the network failure quotient related to age, global and focal cortical thickness, hippocampal volume, and cognition in the normative Human Connectome Project-Aging cohort, replicating previous results from the Mayo Clinic Study of Aging that used a different scanning protocol. Then, we used quantile curves and group-wise comparisons to show that the network failure quotient commonly distinguished both dysexecutive and amnestic Alzheimer's disease patients from the normative cohort. In contrast, focal neurodegeneration markers were more phenotype-specific, where the neurodegeneration of parieto-frontal areas associated with dysexecutive Alzheimer's disease, while the neurodegeneration of hippocampal and temporal areas associated with amnestic Alzheimer's disease. Capitalizing on a large normative cohort and optimized imaging acquisition protocols, we highlight a biomarker of default mode network failure reflecting shared system-level pathophysiological mechanisms across aging and dysexecutive and amnestic Alzheimer's disease and biomarkers of focal neurodegeneration reflecting distinct pathognomonic processes across the amnestic and dysexecutive Alzheimer's disease phenotypes. These findings provide evidence that variability in inter-individual cognitive impairment in Alzheimer's disease may relate to both modular network degeneration and default mode network disruption. These results provide important information to advance complex systems approaches to cognitive aging and degeneration, expand the armamentarium of biomarkers available to aid diagnosis, monitor progression and inform clinical trials.

13.
Cereb Cortex ; 33(11): 7026-7043, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36721911

ABSTRACT

Dysexecutive Alzheimer's disease (dAD) manifests as a progressive dysexecutive syndrome without prominent behavioral features, and previous studies suggest clinico-radiological heterogeneity within this syndrome. We uncovered this heterogeneity using unsupervised machine learning in 52 dAD patients with multimodal imaging and cognitive data. A spectral decomposition of covariance between FDG-PET images yielded six latent factors ("eigenbrains") accounting for 48% of variance in patterns of hypometabolism. These eigenbrains differentially related to age at onset, clinical severity, and cognitive performance. A hierarchical clustering on the eigenvalues of these eigenbrains yielded four dAD subtypes, i.e. "left-dominant," "right-dominant," "bi-parietal-dominant," and "heteromodal-diffuse." Patterns of FDG-PET hypometabolism overlapped with those of tau-PET distribution and MRI neurodegeneration for each subtype, whereas patterns of amyloid deposition were similar across subtypes. Subtypes differed in age at onset and clinical severity where the heteromodal-diffuse exhibited a worse clinical picture, and the bi-parietal had a milder clinical presentation. We propose a conceptual framework of executive components based on the clinico-radiological associations observed in dAD. We demonstrate that patients with dAD, despite sharing core clinical features, are diagnosed with variability in their clinical and neuroimaging profiles. Our findings support the use of data-driven approaches to delineate brain-behavior relationships relevant to clinical practice and disease physiology.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Positron-Emission Tomography/methods , Neuroimaging , Magnetic Resonance Imaging
14.
Neuropsychology ; 37(6): 698-715, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36037486

ABSTRACT

OBJECTIVE: Growing evidence supports the importance of learning as a central deficit in preclinical/prodromal Alzheimer's disease. The aims of this study were to conduct a series of neural network simulations to develop a functional understanding of a distributed, nonmodular memory system that can learn efficiently without interference. This understanding is applied to the development of a novel digital memory test. METHOD: Simulations using traditional feed forward neural network architectures to learn simple logic problems are presented. The simulations demonstrate three limitations: (a) inefficiency, (b) an inability to learn problems consistently, and (c) catastrophic interference when given multiple problems. A new mirrored cascaded architecture is introduced to address these limitations, with support provided by a series of simulations. RESULTS: The mirrored cascaded architecture demonstrates efficient and consistent learning relative to feed forward networks but also suffers from catastrophic interference. Addition of context values to add the capability of distinguishing features as part of learning eliminates the problem of interference in the mirrored cascaded, but not the feed forward, architectures. CONCLUSIONS: A mirrored cascaded architecture addresses the limitations of traditional feed forward neural networks, provides support for a distributed memory system, and emphasizes the importance of context to avoid interference. These process models contributed to the design of a digital computer-adaptive word list learning test that places maximum stress on the capability to distinguish specific episodes of learning. Process simulations provide a useful method of testing models of brain function and contribute to new approaches to neuropsychological assessment. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/psychology , Neural Networks, Computer , Learning , Verbal Learning , Cognitive Dysfunction/psychology
15.
Neurobiol Aging ; 119: 89-101, 2022 11.
Article in English | MEDLINE | ID: mdl-35985098

ABSTRACT

The risk of developing Alzheimer's disease dementia is higher in females compared to males and is greater in individuals with subjective cognitive decline and mild cognitive impairment than in healthy controls. We used a multivariate behavioral partial least square correlation analysis to examine how relationships between memory-related activation and associative memory performance vary as a function of sex and clinical status. This was assessed in 182 participants from the Consortium for the Early Identification of Alzheimer's Disease-Quebec cohort, which were stratified according to sex (Male, Female) and clinical status (healthy controls, subjective cognitive decline, mild cognitive impairment). We found 6 significant latent variables mainly expressing: (1) overall sex differences; (2) between-sex differences according to clinical status; and (3) within-sex differences according to clinical status in relationships between whole-brain memory-related activation and memory performance. These patterns of activation mostly involved the default mode and fronto-parietal networks. Our results have implication in understanding the macro-scale functional processes possibly contributing to the higher risk of cognitive decline in females compared to males in the context of aging and early Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/psychology , Brain/diagnostic imaging , Cognitive Dysfunction/psychology , Female , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Sex Characteristics
16.
Arch Clin Neuropsychol ; 37(6): 1199-1207, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35435228

ABSTRACT

OBJECTIVE: Individuals with early-onset dysexecutive Alzheimer's disease (dAD) have high rates of failed performance validity testing (PVT), which can lead to symptom misinterpretation and misdiagnosis. METHOD: The aim of this retrospective study is to evaluate rates of failure on a common PVT, the test of memory malingering (TOMM), in a sample of clinical patients with biomarker-confirmed early-onset dAD who completed neuropsychological testing. RESULTS: We identified seventeen patients with an average age of symptom onset at 52.25 years old. Nearly fifty percent of patients performed below recommended cut-offs on Trials 1 and 2 of the TOMM. Four of six patients who completed outside neuropsychological testing were misdiagnosed with alternative etiologies to explain their symptomatology, with two of these patients' performances deemed unreliable based on the TOMM. CONCLUSIONS: Low scores on the TOMM should be interpreted in light of contextual and optimally biological information and do not necessarily rule out a neurodegenerative etiology.


Subject(s)
Alzheimer Disease , Malingering , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Diagnostic Errors , Humans , Malingering/diagnosis , Malingering/psychology , Memory Disorders/diagnosis , Memory Disorders/etiology , Memory and Learning Tests , Middle Aged , Neuropsychological Tests , Reproducibility of Results , Retrospective Studies
17.
J Neurol ; 269(8): 4222-4228, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35233692

ABSTRACT

Creutzfeldt-Jakob disease (CJD) is a rare, uniformly fatal prion disease. Although CJD commonly presents with rapidly progressive dementia, ataxia, and myoclonus, substantial clinicopathological heterogeneity is observed in clinical practice. Unusual and predominantly cognitive clinical manifestations of CJD mimicking common dementia syndromes are known to pose as an obstacle to early diagnosis and prognosis. We report a series of three patients with probable or definite CJD (one male and two females, ages 52, 58 and 68) who presented to our tertiary behavioral neurology clinic at Mayo Clinic Rochester that met criteria for a newly defined progressive dysexecutive syndrome. Glucose hypometabolism patterns assessed by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) strongly resembled those of dysexecutive variant of Alzheimer's disease (dAD). However, magnetic resonance imaging (MRI) demonstrated restricted diffusion in neocortical areas and deep nuclei, while cerebrospinal fluid biomarkers indicated abnormal levels of 14-3-3, total-tau, and prion seeding activity (RT-QuIC), establishing the diagnosis of CJD. Electroencephalogram (EEG) additionally revealed features previously documented in atypical cases of CJD. This series of clinical cases demonstrates that CJD can present with a predominantly dysexecutive syndrome and FDG-PET hypometabolism typically seen in dAD. This prompts for the need to integrate information on clinical course with multimodal imaging and fluid biomarkers to provide a precise etiology for dementia syndromes. This has important clinical implications for the diagnosis and prognosis of CJD in the context of emerging clinical characterization of progressive dysexecutive syndromes in neurodegenerative diseases like dAD.


Subject(s)
Creutzfeldt-Jakob Syndrome , Biomarkers/cerebrospinal fluid , Brain/pathology , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Diagnosis, Differential , Electroencephalography , Female , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography/methods
18.
J Neurol ; 269(8): 4110-4128, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35211780

ABSTRACT

Diagnostic criteria for a progressive dysexecutive syndrome due to Alzheimer's disease (dAD) were proposed. Clinical observations suggest substantial variability in the clinico-radiological profiles within this syndrome. We report a case series of 6 patients with dAD highlighting this heterogeneity. Average age at diagnosis was 57.3 years, and patients were followed annually with clinical, cognitive, and multimodal imaging assessments for an average of 3.7 years. Cases were divided based into three subtypes based on their pattern of FDG-PET hypometabolism: predominantly left parieto-frontal (ldAD), predominantly right parieto-frontal (rdAD), or predominantly biparietal (bpdAD) (n = 2 for each). Prominent executive dysfunction was evidenced in all patients. ldAD cases showed greater impairment on measures of verbal working memory and verbal fluency compared to other subtypes. rdAD cases showed more severe alterations in measures of visual abilities compared to language-related domains and committed more perseverative errors on a measure of cognitive flexibility. bpdAD cases presented with predominant cognitive flexibility and inhibition impairment with relative sparing of working memory and a slower rate of clinical progression. rdAD and bpdAD patients developed neuropsychiatric symptoms, whereas none of the ldAD patients did. For each subtype, patterns of tau deposition relatively corresponded to the spatial pattern of FDG hypometabolism. dAD cases could be differentiated from two clinical cases of atypical AD variants (language and visual) in terms of clinical, cognitive and neuroimaging profiles, suggesting that dAD subtypes represent clinical entities separable from other variants of the disease. The recognition of distinct dAD phenotypes has clinical relevance for diagnosis, prognosis, and symptom management.


Subject(s)
Alzheimer Disease , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Memory, Short-Term , Neuropsychological Tests , Phenotype , Positron-Emission Tomography/methods
19.
Neuroimage Clin ; 30: 102643, 2021.
Article in English | MEDLINE | ID: mdl-33813263

ABSTRACT

The goal of this study was to assess how task-related hyperactivation relates to brain network dysfunction and memory performance in individuals at risk of Alzheimer's disease (AD). Eighty participants from the CIMA-Q cohort were included, of which 28 had subjective cognitive decline plus (SCD+), as they had memory complaints and worries in addition to a smaller hippocampal volume and/or an APOE4 allele, 26 had amnestic mild cognitive impairment (MCI) and 26 were healthy controls without memory complaints. Functional magnetic resonance imaging (fMRI) activation was measured during an object-location memory task. Seed-partial least square analyses (seed-PLS) were conducted in controls and in the SCD+/MCI groups to yield sets of orthogonal latent variables (LVs) assessing the triple association between: i) seed activity in brain regions found to be hyperactive in individuals at risk of AD (left hippocampus, left superior parietal lobule, right inferior temporal lobe), ii) latent patterns of whole-brain task-related activation, and iii) associative memory performance. Three LVs in the SCD+ and MCI groups (67.88% of total covariance explained) and two LVs in the controls (77.85% of total covariance explained) were significant. While controls and SCD+/MCI groups shared a common pattern of memory-related connectivity, patterns of hyperactivation-networks interactions were unique to the clinical groups. Interestingly, higher hippocampal connectivity was associated with poorer memory performance whereas higher neocortical connectivity predicted better memory performance in SCD+ and MCI groups. Our data provides empirical evidence that early dysfunction in brain activation and connectivity is present in the very early stages of AD and offers new insights on the relationship between functional brain alterations and memory performance.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging
20.
Alzheimers Dement (Amst) ; 12(1): e12139, 2020.
Article in English | MEDLINE | ID: mdl-33521234

ABSTRACT

INTRODUCTION: Brain activation is hypothesized to form an inverse U-shape in prodromal Alzheimer's disease (AD), with hyperactivation in the early phase, followed by hypoactivation. METHODS: Using task-related functional magnetic resonance imaging (fMRI), we tested the inverse U-shape hypothesis with polynomial regressions and between-group comparisons in individuals with subjective cognitive decline plus (SCD+; smaller hippocampal volumes compared to a group of healthy controls without SCD and/or apolipoprotein E [APOE] ε4 allele) or mild cognitive impairment (MCI). RESULTS: A quadratic function modeled the relationship between proxies of disease severity (neurodegeneration, memory performance) and left superior parietal activation. Linear negative functions modeled the relationship between neurodegeneration and left hippocampal/right inferior temporal activation. Group comparison indicated presence of hyperactivation in SCD+ and hypoactivation in MCI in the left superior parietal lobule, relative to healthy controls. DISCUSSION: These findings support the presence of an inverse U-shape model of activation and suggest that hyperactivation might represent a biomarker of the early AD stages.

SELECTION OF CITATIONS
SEARCH DETAIL
...