Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol ; 7: 87-95, 2015.
Article in English | MEDLINE | ID: mdl-26491375

ABSTRACT

BACKGROUND: Pexmetinib (ARRY-614) is a dual inhibitor of p38 mitogen-activated protein kinase and Tie2 signaling pathways implicated in the pathogenesis of myelodysplastic syndromes. Previous clinical experience in a Phase I dose-escalation study of myelodysplastic syndrome patients using pexmetinib administered as neat powder-in-capsule (PIC) exhibited high variability in pharmacokinetics and excessive pill burden, prompting an effort to improve the formulation of pexmetinib. METHODS: A relative bioavailability assessment encompassed three parallel treatment cohorts of unique subjects comparing the two new formulations (12 subjects per cohort), a liquid oral suspension (LOS) and liquid-filled capsule (LFC) and the current clinical PIC formulation (six subjects) in a fasted state. The food-effect assessment was conducted as a crossover of the LOS and LFC formulations administered under fed and fasted conditions. Subjects were divided into two groups of equal size to evaluate potential period effects on the food-effect assessment. RESULTS: The geometric mean values of the total plasma exposures based upon area-under-the-curve to the last quantifiable sample (AUClast) of pexmetinib were approximately four- and twofold higher after administration of the LFC and LOS formulations, respectively, than after the PIC formulation, when the formulations were administered in the fasted state. When the LFC formulation was administered in the fed state, pexmetinib AUClast decreased by <5% compared with the fasted state. After administration of the LOS formulation in the fed state, pexmetinib AUClast was 34% greater than observed in the fasted state. CONCLUSION: These results suggest that the LFC formulation of pexmetinib may achieve greater exposures with lower doses due to the greater bioavailability compared to the PIC, and remain unaffected by coadministration with food.

2.
J Control Release ; 78(1-3): 249-58, 2002 Jan 17.
Article in English | MEDLINE | ID: mdl-11772465

ABSTRACT

Radiolabeled monoclonal antibodies are widely used in the detection and treatment of cancer. However, several problems still prevent full clinical exploitation of these reagents. Low tumor/background ratios in radioimmunoscintigraphy and high background radioactivity in therapy are the foremost among these. The strategy of pretargeting which separates the tumor-targeting step from radiolocalization step may overcome these limitations. One pretargeting approach, based on the streptavidin-biotin system, has been demonstrated to successfully treat cancer in preclinical models (Proc. Natl. Acad. Sci. 97 (2000) 1802). In this report we describe the synthesis of several electrophilic chelates, designed for use in vivo. In this new pretargeting approach, we have used protein engineering to prepare an antibody that can bind selectively and irreversibly to certain of these metal chelates. This improves upon approaches based on the immunogenic protein streptavidin and the endogenous ligand biotin.


Subject(s)
Antibodies, Monoclonal/metabolism , Chelating Agents/metabolism , Metals/metabolism , Protein Engineering , Radioimmunodetection , Radioimmunotherapy , Animals , Drug Stability , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...