Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
JCO Precis Oncol ; 7: e2200334, 2023 03.
Article in English | MEDLINE | ID: mdl-36996377

ABSTRACT

PURPOSE: Osteosarcoma risk stratification, on the basis of the presence of metastatic disease at diagnosis and histologic response to chemotherapy, has remained unchanged for four decades, does not include genomic features, and has not facilitated treatment advances. We report on the genomic features of advanced osteosarcoma and provide evidence that genomic alterations can be used for risk stratification. MATERIALS AND METHODS: In a primary analytic patient cohort, 113 tumor and 69 normal samples from 92 patients with high-grade osteosarcoma were sequenced with OncoPanel, a targeted next-generation sequencing assay. In this primary cohort, we assessed the genomic landscape of advanced disease and evaluated the correlation between recurrent genomic events and outcome. We assessed whether prognostic associations identified in the primary cohort were maintained in a validation cohort of 86 patients with localized osteosarcoma tested with MSK-IMPACT. RESULTS: In the primary cohort, 3-year overall survival (OS) was 65%. Metastatic disease, present in 33% of patients at diagnosis, was associated with poor OS (P = .04). The most frequently altered genes in the primary cohort were TP53, RB1, MYC, CCNE1, CCND3, CDKN2A/B, and ATRX. Mutational signature 3 was present in 28% of samples. MYC amplification was associated with a worse 3-year OS in both the primary cohort (P = .015) and the validation cohort (P = .012). CONCLUSION: The most frequently occurring genomic events in advanced osteosarcoma were similar to those described in prior reports. MYC amplification, detected with clinical targeted next-generation sequencing panel tests, is associated with poorer outcomes in two independent cohorts.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , High-Throughput Nucleotide Sequencing , Mutation , Osteosarcoma/diagnosis , Osteosarcoma/genetics , Osteosarcoma/pathology , Prognosis , Gene Amplification
2.
Nucleic Acids Res ; 51(D1): D1230-D1241, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36373660

ABSTRACT

CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC's functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing >3200 variants in >470 genes from >3100 publications.


Subject(s)
Genetic Variation , Neoplasms , Humans , Neoplasms/genetics , Knowledge Bases , High-Throughput Nucleotide Sequencing
3.
Nat Med ; 28(8): 1581-1589, 2022 08.
Article in English | MEDLINE | ID: mdl-35739269

ABSTRACT

To evaluate the clinical impact of molecular tumor profiling (MTP) with targeted sequencing panel tests, pediatric patients with extracranial solid tumors were enrolled in a prospective observational cohort study at 12 institutions. In the 345-patient analytical population, median age at diagnosis was 12 years (range 0-27.5); 298 patients (86%) had 1 or more alterations with potential for impact on care. Genomic alterations with diagnostic, prognostic or therapeutic significance were present in 61, 16 and 65% of patients, respectively. After return of the results, impact on care included 17 patients with a clarified diagnostic classification and 240 patients with an MTP result that could be used to select molecularly targeted therapy matched to identified alterations (MTT). Of the 29 patients who received MTT, 24% had an objective response or experienced durable clinical benefit; all but 1 of these patients received targeted therapy matched to a gene fusion. Of the diagnostic variants identified in 209 patients, 77% were gene fusions. MTP with targeted panel tests that includes fusion detection has a substantial clinical impact for young patients with solid tumors.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasms , Adolescent , Adult , Biomarkers, Tumor/genetics , Child , Child, Preschool , Genomics , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Infant, Newborn , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Prospective Studies , Young Adult
4.
Bioorg Med Chem Lett ; 59: 128576, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35065235

ABSTRACT

Structure-based design was utilized to optimize 6,6-diaryl substituted dihydropyrone and hydroxylactam to obtain inhibitors of lactate dehydrogenase (LDH) with low nanomolar biochemical and single-digit micromolar cellular potencies. Surprisingly the replacement of a phenyl with a pyridyl moiety in the chemical structure revealed a new binding mode for the inhibitors with subtle conformational change of the LDHA active site. This led to the identification of a potent, cell-active hydroxylactam inhibitor exhibiting an in vivo pharmacokinetic profile suitable for mouse tumor xenograft study.


Subject(s)
Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Lactams/pharmacology , Animals , Cell Line , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , L-Lactate Dehydrogenase/metabolism , Lactams/chemistry , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship
5.
Article in English | MEDLINE | ID: mdl-34964003

ABSTRACT

PURPOSE: Molecular tumor profiling is becoming a routine part of clinical cancer care, typically involving tumor-only panel testing without matched germline. We hypothesized that integrated germline sequencing could improve clinical interpretation and enhance the identification of germline variants with significant hereditary risks. MATERIALS AND METHODS: Tumors from pediatric patients with high-risk, extracranial solid malignancies were sequenced with a targeted panel of cancer-associated genes. Later, germline DNA was analyzed for a subset of these genes. We performed a post hoc analysis to identify how an integrated analysis of tumor and germline data would improve clinical interpretation. RESULTS: One hundred sixty participants with both tumor-only and germline sequencing reports were eligible for this analysis. Germline sequencing identified 38 pathogenic or likely pathogenic variants among 35 (22%) patients. Twenty-five (66%) of these were included in the tumor sequencing report. The remaining germline pathogenic or likely pathogenic variants were single-nucleotide variants filtered out of tumor-only analysis because of population frequency or copy-number variation masked by additional copy-number changes in the tumor. In tumor-only sequencing, 308 of 434 (71%) single-nucleotide variants reported were present in the germline, including 31% with suggested clinical utility. Finally, we provide further evidence that the variant allele fraction from tumor-only sequencing is insufficient to differentiate somatic from germline events. CONCLUSION: A paired approach to analyzing tumor and germline sequencing data would be expected to improve the efficiency and accuracy of distinguishing somatic mutations and germline variants, thereby facilitating the process of variant curation and therapeutic interpretation for somatic reports, as well as the identification of variants associated with germline cancer predisposition.


Subject(s)
Neoplasms/genetics , Whole Genome Sequencing/standards , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Predisposition to Disease/genetics , Humans , Infant , Male , Precision Medicine/methods , Precision Medicine/standards , Precision Medicine/trends , Whole Genome Sequencing/methods , Whole Genome Sequencing/statistics & numerical data
7.
Science ; 363(6432): 1175-1181, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30872517

ABSTRACT

Cancer treatment decisions are increasingly based on the genomic profile of the patient's tumor, a strategy called "precision oncology." Over the past few years, a growing number of clinical trials and case reports have provided evidence that precision oncology is an effective approach for at least some children with cancer. Here, we review key factors influencing pediatric drug development in the era of precision oncology. We describe an emerging regulatory framework that is accelerating the pace of clinical trials in children as well as design challenges that are specific to trials that involve young cancer patients. Last, we discuss new drug development approaches for pediatric cancers whose growth relies on proteins that are difficult to target therapeutically, such as transcription factors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clinical Trials as Topic/organization & administration , Drug Development/methods , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine/methods , Biomarkers, Tumor/genetics , Child , Humans , Medical Oncology/trends , Molecular Targeted Therapy , Mutation , Pediatrics/trends
8.
Nat Commun ; 10(1): 137, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635584

ABSTRACT

Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired. Here, using unbiased functional approaches, we report that the sensitivity to splicing modulation of the anti-apoptotic BCL2 family genes is a key mechanism underlying preferential cytotoxicity induced by the SF3b-targeting splicing modulator E7107. While BCL2A1, BCL2L2 and MCL1 are prone to splicing perturbation, BCL2L1 exhibits resistance to E7107-induced splicing modulation. Consequently, E7107 selectively induces apoptosis in BCL2A1-dependent melanoma cells and MCL1-dependent NSCLC cells. Furthermore, combination of BCLxL (BCL2L1-encoded) inhibitors and E7107 remarkably enhances cytotoxicity in cancer cells. These findings inform mechanism-based approaches to the future clinical development of splicing modulators in cancer treatment.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Minor Histocompatibility Antigens/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Splicing/drug effects , bcl-X Protein/genetics , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Drug Synergism , Epoxy Compounds/pharmacology , Female , Humans , Lung Neoplasms/genetics , Macrolides/pharmacology , Melanoma/genetics , Mice , Mice, Nude , RNA Interference , RNA Splicing/genetics , RNA, Small Interfering/genetics , Spliceosomes/drug effects , Spliceosomes/genetics , Exome Sequencing , Xenograft Model Antitumor Assays
9.
Nat Commun ; 8(1): 103, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740126

ABSTRACT

Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic options. Although immunotherapies are approved for MIBC, the majority of patients fail to respond, suggesting existence of complementary immune evasion mechanisms. Here, we report that the PPARγ/RXRα pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in MIBC. Recurrent mutations in RXRα at serine 427 (S427F/Y), through conformational activation of the PPARγ/RXRα heterodimer, and focal amplification/overexpression of PPARγ converge to modulate PPARγ/RXRα-dependent transcription programs. Immune cell-infiltration is controlled by activated PPARγ/RXRα that inhibits expression/secretion of inflammatory cytokines. Clinical data sets and an in vivo tumor model indicate that PPARγHigh/RXRαS427F/Y impairs CD8+ T-cell infiltration and confers partial resistance to immunotherapies. Knockdown of PPARγ or RXRα and pharmacological inhibition of PPARγ significantly increase cytokine expression suggesting therapeutic approaches to reviving immunosurveillance and sensitivity to immunotherapies. Our study reveals a class of tumor cell-intrinsic "immuno-oncogenes" that modulate the immune microenvironment of cancer.Muscle-invasive bladder cancer (MIBC) is a potentially lethal disease. Here the authors characterize diverse genetic alterations in MIBC that convergently lead to constitutive activation of PPARgamma/RXRalpha and result in immunosurveillance escape by inhibiting CD8+ T-cell recruitment.


Subject(s)
Immune Evasion/immunology , Monitoring, Immunologic , PPAR gamma/immunology , Retinoid X Receptor alpha/immunology , Urinary Bladder Neoplasms/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Gene Expression Profiling/methods , HCT116 Cells , Humans , Immunoblotting , Immunotherapy/methods , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Mice , Microscopy, Fluorescence , Mutation/immunology , Neoplasm Invasiveness , PPAR gamma/chemistry , PPAR gamma/genetics , Protein Multimerization/immunology , Retinoid X Receptor alpha/chemistry , Retinoid X Receptor alpha/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy
10.
Nat Commun ; 8: 15522, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28541300

ABSTRACT

Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site. RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but inhibits the global action of splicing modulators. Moreover, PHF5A-Y36C alters splicing modulator-induced intron-retention/exon-skipping profile, which correlates with the differential GC content between adjacent introns and exons. We determine the crystal structure of human PHF5A demonstrating that Y36 is located on a highly conserved surface. Analysis of the cryo-EM spliceosome Bact complex shows that the resistance mutations cluster in a pocket surrounding the branch point adenosine, suggesting a competitive mode of action. Collectively, we propose that PHF5A-SF3B1 forms a central node for binding to these splicing modulators.


Subject(s)
Adenosine/chemistry , Alternative Splicing , Carrier Proteins/chemistry , Phosphoproteins/chemistry , RNA Splicing Factors/chemistry , Cell Proliferation , Cell Survival , Cryoelectron Microscopy , Crystallography, X-Ray , Epoxy Compounds/chemistry , Exons , Fatty Alcohols/chemistry , HCT116 Cells , Humans , Introns , Macrolides/chemistry , Mass Spectrometry , Mutagenesis, Site-Directed , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Phosphoproteins/metabolism , Protein Binding , Protein Conformation , Pyrans/chemistry , RNA Interference , RNA Splicing Factors/metabolism , RNA-Binding Proteins , Recombinant Proteins/chemistry , Sequence Analysis, RNA , Spiro Compounds/chemistry , Spliceosomes/metabolism , Trans-Activators
11.
ACS Med Chem Lett ; 7(10): 896-901, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27774125

ABSTRACT

A series of trisubstituted hydroxylactams was identified as potent enzymatic and cellular inhibitors of human lactate dehydrogenase A. Utilizing structure-based design and physical property optimization, multiple inhibitors were discovered with <10 µM lactate IC50 in a MiaPaca2 cell line. Optimization of the series led to 29, a potent cell active molecule (MiaPaca2 IC50 = 0.67 µM) that also possessed good exposure when dosed orally to mice.

12.
Nat Chem Biol ; 12(10): 779-86, 2016 10.
Article in English | MEDLINE | ID: mdl-27479743

ABSTRACT

Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK-mTOR-S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK-S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.


Subject(s)
Cell Plasticity/drug effects , Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyridones/pharmacology , Thiophenes/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , L-Lactate Dehydrogenase/metabolism , Models, Molecular , Molecular Structure , Pyridones/chemistry , Structure-Activity Relationship , Thiophenes/chemistry
13.
Cell Rep ; 13(5): 1033-45, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26565915

ABSTRACT

Recurrent mutations in the spliceosome are observed in several human cancers, but their functional and therapeutic significance remains elusive. SF3B1, the most frequently mutated component of the spliceosome in cancer, is involved in the recognition of the branch point sequence (BPS) during selection of the 3' splice site (ss) in RNA splicing. Here, we report that common and tumor-specific splicing aberrations are induced by SF3B1 mutations and establish aberrant 3' ss selection as the most frequent splicing defect. Strikingly, mutant SF3B1 utilizes a BPS that differs from that used by wild-type SF3B1 and requires the canonical 3' ss to enable aberrant splicing during the second step. Approximately 50% of the aberrantly spliced mRNAs are subjected to nonsense-mediated decay resulting in downregulation of gene and protein expression. These findings ascribe functional significance to the consequences of SF3B1 mutations in cancer.


Subject(s)
Alternative Splicing , Mutation , Neoplasms/genetics , Phosphoproteins/genetics , Ribonucleoprotein, U2 Small Nuclear/genetics , Alleles , Amino Acid Sequence , Base Sequence , HEK293 Cells , Humans , Molecular Sequence Data , Mutation Rate , Nonsense Mediated mRNA Decay , Phosphoproteins/chemistry , Phosphoproteins/metabolism , RNA Splicing Factors , Ribonucleoprotein, U2 Small Nuclear/chemistry , Ribonucleoprotein, U2 Small Nuclear/metabolism
14.
Proc Natl Acad Sci U S A ; 112(32): E4410-7, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26216984

ABSTRACT

Although targeting cancer metabolism is a promising therapeutic strategy, clinical success will depend on an accurate diagnostic identification of tumor subtypes with specific metabolic requirements. Through broad metabolite profiling, we successfully identified three highly distinct metabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). One subtype was defined by reduced proliferative capacity, whereas the other two subtypes (glycolytic and lipogenic) showed distinct metabolite levels associated with glycolysis, lipogenesis, and redox pathways, confirmed at the transcriptional level. The glycolytic and lipogenic subtypes showed striking differences in glucose and glutamine utilization, as well as mitochondrial function, and corresponded to differences in cell sensitivity to inhibitors of glycolysis, glutamine metabolism, lipid synthesis, and redox balance. In PDAC clinical samples, the lipogenic subtype associated with the epithelial (classical) subtype, whereas the glycolytic subtype strongly associated with the mesenchymal (QM-PDA) subtype, suggesting functional relevance in disease progression. Pharmacogenomic screening of an additional ∼ 200 non-PDAC cell lines validated the association between mesenchymal status and metabolic drug response in other tumor indications. Our findings highlight the utility of broad metabolite profiling to predict sensitivity of tumors to a variety of metabolic inhibitors.


Subject(s)
Adenocarcinoma/classification , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/classification , Carcinoma, Pancreatic Ductal/metabolism , Metabolome , Metabolomics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Glucose/metabolism , Glutamine/metabolism , Glycolysis/genetics , Humans , Inhibitory Concentration 50 , Lipogenesis/genetics , Mesoderm/metabolism , Mesoderm/pathology , Metabolome/genetics , Reproducibility of Results , Transcription, Genetic
15.
Bioorg Med Chem Lett ; 25(1): 75-82, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25466195

ABSTRACT

Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enone using structure-based design strategies resulted in inhibitors with considerable improvement in biochemical potency against human lactate dehydrogenase A (LDHA). These potent inhibitors were typically selective for LDHA over LDHB isoform (4­10 fold) and other structurally related malate dehydrogenases, MDH1 and MDH2 (>500 fold). An X-ray crystal structure of enzymatically most potent molecule bound to LDHA revealed two additional interactions associated with enhanced biochemical potency.


Subject(s)
Enzyme Inhibitors/chemical synthesis , L-Lactate Dehydrogenase/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , L-Lactate Dehydrogenase/metabolism , Madin Darby Canine Kidney Cells
16.
Bioorg Med Chem Lett ; 24(24): 5683-5687, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25467161

ABSTRACT

A series of 3,6-disubstituted dihydropyrones were identified as inhibitors of human lactate dehydrogenase (LDH)-A. Structure activity relationships were explored and a series of 6,6-spiro analogs led to improvements in LDHA potency (IC50 <350 nM). An X-ray crystal structure of an improved compound bound to human LDHA was obtained and it illustrated additional opportunities to enhance the potency of these compounds, resulting in the identification of 51 (IC50=30 nM).


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyrones/chemical synthesis , Pyrones/pharmacology , Binding Sites , Crystallography, X-Ray , Humans , L-Lactate Dehydrogenase/metabolism , Models, Molecular , Molecular Structure , Structure-Activity Relationship
17.
Org Lett ; 16(21): 5560-3, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25376106

ABSTRACT

A total synthesis of the natural product 6-deoxypladienolide D (1) has been achieved. Two noteworthy attributes of the synthesis are (1) a late-stage allylic oxidation which proceeds with full chemo-, regio-, and diastereoselectivity and (2) the development of a scalable and cost-effective synthetic route to support drug discovery efforts. 6-Deoxypladienolide D (1) demonstrates potent growth inhibition in a mutant SF3B1 cancer cell line, high binding affinity to the SF3b complex, and inhibition of pre-mRNA splicing.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor/chemistry , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Epoxy Compounds/chemical synthesis , Epoxy Compounds/metabolism , Macrolides/chemical synthesis , Macrolides/metabolism , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , RNA Splicing/drug effects , Ribonucleoprotein, U2 Small Nuclear/antagonists & inhibitors , Ribonucleoprotein, U2 Small Nuclear/chemistry , Antineoplastic Agents/chemistry , Binding Sites , Epoxy Compounds/chemistry , Humans , Macrolides/chemistry , RNA Splicing Factors
18.
Bioorg Med Chem Lett ; 24(16): 3764-71, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25037916

ABSTRACT

A novel class of 3-hydroxy-2-mercaptocyclohex-2-enone-containing inhibitors of human lactate dehydrogenase (LDH) was identified through a high-throughput screening approach. Biochemical and surface plasmon resonance experiments performed with a screening hit (LDHA IC50=1.7 µM) indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of this screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.18 µM). Two crystal structures of optimized compounds bound to human LDHA were obtained and explained many of the observed structure-activity relationships. In addition, an optimized inhibitor exhibited good pharmacokinetic properties after oral administration to rats (F=45%).


Subject(s)
Cyclohexanones/pharmacology , Enzyme Inhibitors/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , Sulfhydryl Compounds/pharmacology , Administration, Oral , Animals , Cyclohexanones/administration & dosage , Cyclohexanones/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Humans , L-Lactate Dehydrogenase/metabolism , Models, Molecular , Molecular Structure , Rats , Structure-Activity Relationship , Sulfhydryl Compounds/administration & dosage , Sulfhydryl Compounds/chemistry
19.
Bioorg Med Chem Lett ; 23(20): 5533-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24012183

ABSTRACT

A 2-amino-5-aryl-pyrazine was identified as an inhibitor of human lactate dehydrogenase A (LDHA) via a biochemical screening campaign. Biochemical and biophysical experiments demonstrated that the compound specifically interacted with human LDHA. Structural variation of the screening hit resulted in improvements in LDHA biochemical inhibition and pharmacokinetic properties. A crystal structure of an improved compound bound to human LDHA was also obtained and it explained many of the observed structure-activity relationships.


Subject(s)
Enzyme Inhibitors/chemistry , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyrazines/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Half-Life , Humans , L-Lactate Dehydrogenase/metabolism , Male , Microsomes, Liver/metabolism , Protein Structure, Tertiary , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 23(11): 3186-94, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23628333

ABSTRACT

A novel 2-thio-6-oxo-1,6-dihydropyrimidine-containing inhibitor of human lactate dehydrogenase (LDH) was identified by high-throughput screening (IC50=8.1 µM). Biochemical, surface plasmon resonance, and saturation transfer difference NMR experiments indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of the screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.48 µM). A crystal structure of an optimized compound bound to human LDHA was obtained and explained many of the observed structure-activity relationships.


Subject(s)
Enzyme Inhibitors/chemistry , L-Lactate Dehydrogenase/antagonists & inhibitors , Pyrimidines/chemistry , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Hydrogen Bonding , L-Lactate Dehydrogenase/metabolism , Magnetic Resonance Spectroscopy , NAD/metabolism , Protein Binding , Protein Structure, Tertiary , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Structure-Activity Relationship , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...