Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 398: 133863, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35961173

ABSTRACT

Beer quality generally diminishes over time as staling compounds accumulate through various oxidation reactions. Here, we show that refermentation, a traditional practice where Saccharomyces cerevisiae cells are added to beer prior to bottling, diminishes the accumulation of staling aldehydes. However, commonly used beer yeasts only show a limited lifespan in beer. Using high-throughput screening and breeding, we were able to generate novel S. cerevisiae hybrids that survive for over a year in beer. Extensive chemical and sensory analyses of the two most promising hybrids showed that they slow down the accumulation of staling aldehydes, such as furfural and trans-2-nonenal and significantly increased beer flavor stability for up to 12 months. Moreover, the strains did not change the original flavor of the beer, highlighting their potential to be integrated in existing products. Together, these results demonstrate the ability to breed novel microbes that function as natural and sustainable anti-oxidative food preservatives.


Subject(s)
Beer , Saccharomyces cerevisiae , Aldehydes/analysis , Beer/analysis , Fermentation , Plant Breeding , Saccharomyces cerevisiae/genetics
2.
Biotechnol Biofuels ; 14(1): 211, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34727964

ABSTRACT

BACKGROUND: The brewer's yeast Saccharomyces cerevisiae is exploited in several industrial processes, ranging from food and beverage fermentation to the production of biofuels, pharmaceuticals and complex chemicals. The large genetic and phenotypic diversity within this species offers a formidable natural resource to obtain superior strains, hybrids, and variants. However, most industrially relevant traits in S. cerevisiae strains are controlled by multiple genetic loci. Over the past years, several studies have identified some of these QTLs. However, because these studies only focus on a limited set of traits and often use different techniques and starting strains, a global view of industrially relevant QTLs is still missing. RESULTS: Here, we combined the power of 1125 fully sequenced inbred segregants with high-throughput phenotyping methods to identify as many as 678 QTLs across 18 different traits relevant to industrial fermentation processes, including production of ethanol, glycerol, isobutanol, acetic acid, sulfur dioxide, flavor-active esters, as well as resistance to ethanol, acetic acid, sulfite and high osmolarity. We identified and confirmed several variants that are associated with multiple different traits, indicating that many QTLs are pleiotropic. Moreover, we show that both rare and common variants, as well as variants located in coding and non-coding regions all contribute to the phenotypic variation. CONCLUSIONS: Our findings represent an important step in our understanding of the genetic underpinnings of industrially relevant yeast traits and open new routes to study complex genetics and genetic interactions as well as to engineer novel, superior industrial yeasts. Moreover, the major role of rare variants suggests that there is a plethora of different combinations of mutations that can be explored in genome editing.

SELECTION OF CITATIONS
SEARCH DETAIL
...