Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 40(11): 991-1007, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36044737

ABSTRACT

Over the past decades, substantial advances in neonatal medical care have increased the survival of extremely premature infants. However, there continues to be significant morbidity associated with preterm birth with common complications including bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), neuronal injury such as intraventricular hemorrhage (IVH) or hypoxic ischemic encephalopathy (HIE), as well as retinopathy of prematurity (ROP). Common developmental immune and inflammatory pathways underlie the pathophysiology of such complications providing the opportunity for multisystem therapeutic approaches. To date, no single therapy has proven to be effective enough to prevent or treat the sequelae of prematurity. In the past decade mesenchymal stem/stromal cell (MSC)-based therapeutic approaches have shown promising results in numerous experimental models of neonatal diseases. It is now accepted that the therapeutic potential of MSCs is comprised of their secretome, and several studies have recognized the small extracellular vesicles (sEVs) as the paracrine vector. Herein, we review the current literature on the MSC-EVs as potential therapeutic agents in neonatal diseases and comment on the progress and challenges of their translation to the clinical setting.


Subject(s)
Bronchopulmonary Dysplasia , Enterocolitis, Necrotizing , Extracellular Vesicles , Infant, Newborn, Diseases , Mesenchymal Stem Cells , Premature Birth , Infant , Pregnancy , Female , Infant, Newborn , Humans , Premature Birth/metabolism , Bronchopulmonary Dysplasia/therapy , Bronchopulmonary Dysplasia/metabolism , Infant, Newborn, Diseases/metabolism , Infant, Newborn, Diseases/therapy , Enterocolitis, Necrotizing/metabolism , Extracellular Vesicles/metabolism
2.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328555

ABSTRACT

Corneal epithelial wound healing is a multifaceted process that encompasses cell proliferation, migration, and communication from the corneal stroma. Upon corneal injury, bidirectional crosstalk between the epithelium and stroma via extracellular vesicles (EVs) has been reported. However, the mechanisms by which the EVs from human corneal keratocytes (HCKs), fibroblasts (HCFs), and/or myofibroblasts (HCMs) exert their effects on the corneal epithelium remain unclear. In this study, HCK-, HCF-, and HCM-EVs were isolated and characterized, and human corneal epithelial (HCE) cell migration was assessed in a scratch assay following PKH26-labeled HCK-, HCF-, or HCM-EV treatment. HCE cells proliferative and apoptotic activity following EV treatment was assessed. HCF-/HCM-EVs were enriched for CD63, CD81, ITGAV, and THBS1 compared to HCK-EV. All EVs were negative for GM130 and showed minimal differences in biophysical properties. At the proteomic level, we showed HCM-EV with a log >two-fold change in CXCL6, CXCL12, MMP1, and MMP2 expression compared to HCK-/HCF-EVs; these proteins are associated with cellular movement pathways. Upon HCM-EV treatment, HCE cell migration, velocity, and proliferation were significantly increased compared to HCK-/HCF-EVs. This study concludes that the HCM-EV protein cargo influences HCE cell migration and proliferation, and understanding these elements may provide a novel therapeutic avenue for corneal wound healing.


Subject(s)
Corneal Injuries , Epithelium, Corneal , Extracellular Vesicles , Cell Movement , Corneal Injuries/metabolism , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Myofibroblasts/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...