Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260455

ABSTRACT

Epigenetic control of cellular transcription and phenotype is influenced by changes in the cellular microenvironment, yet how mechanical cues from these microenvironments precisely influence epigenetic state to regulate transcription remains largely unmapped. Here, we combine genome-wide epigenome profiling, epigenome editing, and phenotypic and single-cell RNA-seq CRISPR screening to identify a new class of genomic enhancers that responds to the mechanical microenvironment. These 'mechanoenhancers' could be active on either soft or stiff extracellular matrix contexts, and regulated transcription to influence critical cell functions including apoptosis, mechanotransduction, proliferation, and migration. Epigenetic editing of mechanoenhancers on rigid materials tuned gene expression to levels observed on softer materials, thereby reprogramming the cellular response to the mechanical microenvironment. These editing approaches may enable the precise alteration of mechanically-driven disease states.

2.
Annu Rev Biomed Eng ; 23: 493-516, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33909475

ABSTRACT

The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Biocompatible Materials , CRISPR-Cas Systems/genetics , Humans
3.
Biomaterials ; 270: 120662, 2021 03.
Article in English | MEDLINE | ID: mdl-33540172

ABSTRACT

Exogenous mechanical cues are transmitted from the extracellular matrix to the nuclear envelope (NE), where mechanical stress on the NE mediates shuttling of transcription factors and other signaling cascades that dictate downstream cellular behavior and fate decisions. To systematically study how nuclear morphology can change across various physiologic microenvironmental contexts, we cultured mesenchymal progenitor cells (MSCs) in engineered 2D and 3D hyaluronic acid hydrogel systems. Across multiple contexts we observed highly 'wrinkled' nuclear envelopes, and subsequently developed a quantitative single-cell imaging metric to better evaluate how wrinkles in the nuclear envelope relate to progenitor cell mechanotransduction. We determined that in soft 2D environments the NE is predominately wrinkled, and that increases in cellular mechanosensing (indicated by cellular spreading, adhesion complex growth, and nuclear localization of YAP/TAZ) occurred only in absence of nuclear envelope wrinkling. Conversely, in 3D hydrogel and tissue contexts, we found NE wrinkling occurred along with increased YAP/TAZ nuclear localization. We further determined that these NE wrinkles in 3D were largely generated by actin impingement, and compared to other nuclear morphometrics, the degree of nuclear wrinkling showed the greatest correlation with nuclear YAP/TAZ localization. These findings suggest that the degree of nuclear envelope wrinkling can predict mechanotransduction state in mesenchymal progenitor cells and highlights the differential mechanisms of NE stress generation operative in 2D and 3D microenvironmental contexts.


Subject(s)
Mesenchymal Stem Cells , Humans , Mechanotransduction, Cellular , Nuclear Envelope , Signal Transduction , Transcription Factors
4.
Mol Cell ; 79(3): 365-367, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32763224

ABSTRACT

In a recent issue of Molecular Cell, Wang et al. (2020) employ unbiased proteomics approaches and live-cell imaging to reveal a key role for the histone chaperone complex FACT (SPT16 and SSRP1) in governing Cas9 turnover at the DNA target site during genome and epigenome editing.


Subject(s)
Gene Editing , RNA, Long Noncoding , CRISPR-Cas Systems , DNA-Binding Proteins , Histones
5.
Mol Biol Cell ; 30(1): 17-29, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30379592

ABSTRACT

An activating bone morphogenetic proteins (BMP) type I receptor ACVR1 (ACVR1R206H) mutation enhances BMP pathway signaling and causes the rare genetic disorder of heterotopic (extraskeletal) bone formation fibrodysplasia ossificans progressiva. Heterotopic ossification frequently occurs following injury as cells aberrantly differentiate during tissue repair. Biomechanical signals from the tissue microenvironment and cellular responses to these physical cues, such as stiffness and rigidity, are important determinants of cell differentiation and are modulated by BMP signaling. We used an Acvr1R206H/+ mouse model of injury-induced heterotopic ossification to examine the fibroproliferative tissue preceding heterotopic bone and identified pathologic stiffening at this stage of repair. In response to microenvironment stiffness, in vitro assays showed that Acvr1R206H/+ cells inappropriately sense their environment, responding to soft substrates with a spread morphology similar to wild-type cells on stiff substrates and to cells undergoing osteoblastogenesis. Increased activation of RhoA and its downstream effectors demonstrated increased mechanosignaling. Nuclear localization of the pro-osteoblastic factor RUNX2 on soft and stiff substrates suggests a predisposition to this cell fate. Our data support that increased BMP signaling in Acvr1R206H/+ cells alters the tissue microenvironment and results in misinterpretation of the tissue microenvironment through altered sensitivity to mechanical stimuli that lowers the threshold for commitment to chondro/osteogenic lineages.


Subject(s)
Activin Receptors, Type I/genetics , Mechanotransduction, Cellular , Mutation/genetics , Myositis Ossificans/genetics , Myositis Ossificans/physiopathology , Ossification, Heterotopic/genetics , Ossification, Heterotopic/physiopathology , Animals , Biomechanical Phenomena , Cell Nucleus/metabolism , Collagen/metabolism , Elasticity , Extracellular Matrix/metabolism , Humans , Mice , Signal Transduction
6.
Nucleus ; 9(1): 9-19, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29099288

ABSTRACT

Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this "mechano-adaptation" are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.


Subject(s)
Cell Nucleus/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Adaptation, Physiological , Animals , Cell Differentiation , Humans , Mechanical Phenomena
7.
Biomacromolecules ; 18(3): 855-864, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28146630

ABSTRACT

Given the significance of hydrogels as cell-instructive materials, it is important to understand how differences in their chemical and physical properties are able to direct cell fate. For example, it remains unclear how different hydrogel cross-linking chemistries and gelation mechanisms influence cell behavior. Here, we report on hyaluronan-tyramine (HA-Tyr) hydrogels prepared either with enzymatic cross-linking using horseradish peroxidase and H2O2 or with visible light (500 nm) triggered gelation. We demonstrate that when hydrogels are polymerized to equivalent Young's moduli, the specific cross-linking chemistry of HA-Tyr hydrogels can have a substantial impact on mesenchymal stem cell (MSC) behavior. MSCs cultured on HA-Tyr hydrogels exhibit increased cell spread areas on enzymatically formed substrates relative to photo-cross-linked matrices. While enzymatically formed hydrogels led to MSCs exhibiting greater cell focal adhesion length, MSCs cultured on the photo-cross-linked matrices exhibited smaller cell spread area and shorter focal adhesion length but generated increased traction stress. These findings highlight the importance of understanding hydrogel cross-linking chemistries when the role of biophysical cues in regulating stem cell fate is investigated.


Subject(s)
Hyaluronic Acid/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/drug effects , Tyramine/chemistry , Animals , Biocompatible Materials/chemistry , Cattle , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Elastic Modulus/drug effects , Horseradish Peroxidase/metabolism , Hydrogen Peroxide/metabolism , Mechanical Phenomena
8.
Biophys J ; 111(4): 864-874, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27558729

ABSTRACT

Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Mechanical Phenomena , Mesenchymal Stem Cells/cytology , Adenosine Triphosphate/metabolism , Animals , Biomechanical Phenomena , Bone Morphogenetic Proteins/metabolism , Cattle , Extracellular Space/metabolism , Mesenchymal Stem Cells/metabolism , Signal Transduction , Tensile Strength , Transforming Growth Factor beta/metabolism
9.
Nat Mater ; 15(12): 1297-1306, 2016 12.
Article in English | MEDLINE | ID: mdl-27525568

ABSTRACT

During mesenchymal development, the microenvironment gradually transitions from one that is rich in cell-cell interactions to one that is dominated by cell-ECM (extracellular matrix) interactions. Because these cues cannot readily be decoupled in vitro or in vivo, how they converge to regulate mesenchymal stem cell (MSC) mechanosensing is not fully understood. Here, we show that a hyaluronic acid hydrogel system enables, across a physiological range of ECM stiffness, the independent co-presentation of the HAVDI adhesive motif from the EC1 domain of N-cadherin and the RGD adhesive motif from fibronectin. Decoupled presentation of these cues revealed that HAVDI ligation (at constant RGD ligation) reduced the contractile state and thereby nuclear YAP/TAZ localization in MSCs, resulting in altered interpretation of ECM stiffness and subsequent changes in downstream cell proliferation and differentiation. Our findings reveal that, in an evolving developmental context, HAVDI/N-cadherin interactions can alter stem cell perception of the stiffening extracellular microenvironment.


Subject(s)
Cadherins/metabolism , Cell Adhesion , Mechanical Phenomena , Mesenchymal Stem Cells/cytology , Animals , Biomechanical Phenomena , Cattle , Cell Adhesion/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Mesenchymal Stem Cells/drug effects , Methylation
10.
Sci Rep ; 6: 21387, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26906177

ABSTRACT

Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.


Subject(s)
Hepatic Stellate Cells/physiology , Hydrogels/chemistry , Mechanotransduction, Cellular , Myofibroblasts/physiology , Active Transport, Cell Nucleus , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Shape , Cells, Cultured , Hyaluronic Acid/chemistry , Methacrylates/chemistry , Rats, Sprague-Dawley , YAP-Signaling Proteins
11.
Biophys J ; 108(12): 2783-93, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26083918

ABSTRACT

Mechanical forces transduced to cells through the extracellular matrix are critical regulators of tissue development, growth, and homeostasis, and can play important roles in directing stem cell differentiation. In addition to force-sensing mechanisms that reside at the cell surface, there is growing evidence that forces transmitted through the cytoskeleton and to the nuclear envelope are important for mechanosensing, including activation of the Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) pathway. Moreover, nuclear shape, mechanics, and deformability change with differentiation state and have been likewise implicated in force sensing and differentiation. However, the significance of force transfer to the nucleus through the mechanosensing cytoskeletal machinery in the regulation of mesenchymal stem cell mechanobiologic response remains unclear. Here we report that actomyosin-generated cytoskeletal tension regulates nuclear shape and force transmission through the cytoskeleton and demonstrate the differential short- and long-term response of mesenchymal stem cells to dynamic tensile loading based on the contractility state, the patency of the actin cytoskeleton, and the connections it makes with the nucleus. Specifically, we show that while some mechanoactive signaling pathways (e.g., ERK signaling) can be activated in the absence of nuclear strain transfer, cytoskeletal strain transfer to the nucleus is essential for activation of the YAP/TAZ pathway with stretch.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeleton/metabolism , Mechanotransduction, Cellular , Mesenchymal Stem Cells/metabolism , Nuclear Envelope/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Animals , Cattle , Cells, Cultured , Protein Structure, Tertiary
12.
J Biomech ; 47(9): 2130-6, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24275442

ABSTRACT

Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput.


Subject(s)
Cartilage, Articular , Tissue Engineering/methods , Biocompatible Materials , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...