Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
FASEB J ; 38(4): e23471, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38358358

ABSTRACT

The intestinal epithelial layer is susceptible to damage by chemical, physiological and mechanical stress. While it is essential to maintain the integrity of epithelium, the biochemical pathways that contribute to the barrier function have not been completely investigated. Here we demonstrate an aryl hydrocarbon receptor (AHR)-dependent mechanism facilitating the production of the antimicrobial peptide AMP regenerating islet-derived protein 3 gamma (REG3G), which is essential for intestinal homeostasis. Genetic ablation of AHR in mice impairs pSTAT3-mediated REG3G expression and increases bacterial numbers of Segmented filamentous bacteria (SFB) and Akkermansia muciniphila in the small intestine. Studies with tissue-specific conditional knockout mice revealed that the presence of AHR in the epithelial cells of the small intestine is not required for the production of REG3G through the phosphorylated STAT3-mediated pathway. However, immune-cell-specific AHR activity is necessary for normal expression of REG3G in all regions of the small intestine. A diet rich in broccoli, capable of inducing AHR activity, increases REG3G production when compared to a semi-purified diet that is devoid of ligands that can potentially activate the AHR, thus highlighting the importance of AHR in antimicrobial function. Overall, these data suggest that homeostatic antimicrobial REG3G production is increased by an AHR pathway intrinsic to the immune cells in the small intestine.


Subject(s)
Anti-Infective Agents , Receptors, Aryl Hydrocarbon , Animals , Mice , Cytoskeleton , Epithelial Cells , Intestine, Small , Mice, Knockout , Receptors, Aryl Hydrocarbon/genetics
2.
Metabolites ; 13(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37755265

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays an important role in gastrointestinal barrier function, tumorigenesis, and is an emerging drug target. The resident microbiota is capable of metabolizing tryptophan to metabolites that are AHR ligands (e.g., indole-3-acetate). Recently, a novel set of mutagenic tryptophan metabolites named indolimines have been identified that are produced by M. morganii in the gastrointestinal tract. Here, we determined that indolimine-200, -214, and -248 are direct AHR ligands that can induce Cyp1a1 transcription and subsequent CYP1A1 enzymatic activity capable of metabolizing the carcinogen benzo(a)pyrene in microsomal assays. In addition, indolimines enhance IL6 expression in a colonic tumor cell line in combination with cytokine treatment. The concentration of indolimine-248 that induces AHR transcriptional activity failed to increase DNA damage. These observations reveal an additional aspect of how indolimines may alter colonic tumorigenesis beyond mutagenic activity.

3.
FASEB J ; 37(7): e23010, 2023 07.
Article in English | MEDLINE | ID: mdl-37272852

ABSTRACT

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in rapid clearance within the intestinal tract, limiting systemic exposure and subsequent AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that functionally increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA), a gut bacterial metabolite of ellagitannins, as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). In mice, dietary exposure to UroA in a 10% broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in the liver. Thus, CYP1A1 dietary competitive substrates can lead to enhanced systemic AHR ligand distribution from the gut, likely through the lymphatic system, increasing AHR activation in key barrier tissues. Finally, this report will lead to a reassessment of the dynamics of distribution of other hydrophobic chemicals present in the diet.


Subject(s)
Cytochrome P-450 CYP1A1 , Gastrointestinal Tract , Lung , Receptors, Aryl Hydrocarbon , Animals , Mice , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Ligands , Liver/metabolism , Lung/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Diet , Gastrointestinal Tract/metabolism
4.
Lab Invest ; 103(2): 100012, 2023 02.
Article in English | MEDLINE | ID: mdl-37039146

ABSTRACT

In the face of mechanical, chemical, microbial, and immunologic pressure, intestinal homeostasis is maintained through balanced cellular turnover, proliferation, differentiation, and self-renewal. Here, we present evidence supporting the role of the aryl hydrocarbon receptor (AHR) in the adaptive reprogramming of small intestinal gene expression, leading to altered proliferation, lineage commitment, and remodeling of the cellular repertoire that comprises the intestinal epithelium to promote intestinal resilience. Ahr gene/protein expression and transcriptional activity exhibit marked proximalHI to distalLO and cryptHI to villiLO gradients. Genetic ablation of Ahr impairs commitment/differentiation of the secretory Paneth and goblet cell lineages and associated mucin production, restricts expression of secretory/enterocyte differentiation markers, and increases crypt-associated proliferation and villi-associated enterocyte luminal exfoliation. Ahr-/- mice display a decrease in intestinal barrier function. Ahr+/+ mice that maintain a diet devoid of AHR ligands intestinally phenocopy Ahr-/- mice. In contrast, Ahr+/+ mice exposed to AHR ligands reverse these phenotypes. Ligand-induced AHR transcriptional activity positively correlates with gene expression (Math1, Klf4, Tff3) associated with differentiation of the goblet cell secretory lineage. Math1 was identified as a direct target gene of AHR, a transcription factor critical to the development of goblet cells. These data suggest that dietary cues, relayed through the transcriptional activity of AHR, can reshape the cellular repertoire of the gastrointestinal tract.


Subject(s)
Epithelial Cells , Receptors, Aryl Hydrocarbon , Animals , Mice , Cell Differentiation , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Intestines , Ligands , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
5.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36865156

ABSTRACT

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in the rapid clearance within the intestinal tract, limiting AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA) as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). Dietary exposure to UroA in a broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in liver. Thus, CYP1A1 dietary competitive substrates can lead to intestinal escape, likely through the lymphatic system, increasing AHR activation in key barrier tissues.

6.
J Proteome Res ; 18(1): 239-251, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30336042

ABSTRACT

The constitutive androstane receptor (CAR; NR1I3) contributes important regulatory roles in biotransformation, xenobiotic transport function, energy metabolism and lipid homeostasis. In this investigation, global serum and liver tissue metabolomes were assessed analytically in wild type and CAR-null transgenic mice using NMR, GC-MS and UPLC-MS/MS-based metabolomics. Significantly, CAR activation increased serum levels of fatty acids, lactate, ketone bodies and tricarboxylic acid cycle products, whereas levels of phosphatidylcholine, sphingomyelin, amino acids and liver glucose were decreased following short-term activation of CAR. Mechanistically, quantitative mRNA analysis demonstrated significantly decreased expression of key gluconeogenic pathways, and increased expression of glucose utilization pathways, changes likely resulting from down-regulation of the hepatic glucose sensor and bidirectional transporter, Glut2. Short-term CAR activation also resulted in enhanced fatty acid synthesis and impaired ß-oxidation. In summary, CAR contributes an expansive role regulating energy metabolism, significantly impacting glucose and monocarboxylic acid utilization, fatty acid metabolism and lipid homeostasis, through receptor-mediated regulation of several genes in multiple associated pathways.


Subject(s)
Energy Metabolism , Metabolomics/methods , Receptors, Cytoplasmic and Nuclear/physiology , Animals , Constitutive Androstane Receptor , Fatty Acids/metabolism , Gluconeogenesis , Glucose/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Transgenic
7.
Nucleic Acids Res ; 46(16): 8385-8403, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30102401

ABSTRACT

The constitutive androstane receptor (CAR; NR1I3) is a nuclear receptor orchestrating complex roles in cell and systems biology. Species differences in CAR's effector pathways remain poorly understood, including its role in regulating liver tumor promotion. We developed transgenic mouse models to assess genome-wide binding of mouse and human CAR, following receptor activation in liver with direct ligands and with phenobarbital, an indirect CAR activator. Genomic interaction profiles were integrated with transcriptional and biological pathway analyses. Newly identified CAR target genes included Gdf15 and Foxo3, important regulators of the carcinogenic process. Approximately 1000 genes exhibited differential binding interactions between mouse and human CAR, including the proto-oncogenes, Myc and Ikbke, which demonstrated preferential binding by mouse CAR as well as mouse CAR-selective transcriptional enhancement. The ChIP-exo analyses also identified distinct binding motifs for the respective mouse and human receptors. Together, the results provide new insights into the important roles that CAR contributes as a key modulator of numerous signaling pathways in mammalian organisms, presenting a genomic context that specifies species variation in biological processes under CAR's control, including liver cell proliferation and tumor promotion.


Subject(s)
Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Liver Neoplasms/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Androstanes/chemistry , Androstanes/metabolism , Animals , Constitutive Androstane Receptor , Forkhead Box Protein O3/genetics , Genes, myc/genetics , Genome/genetics , Growth Differentiation Factor 15/genetics , Hepatocytes/metabolism , Humans , I-kappa B Kinase/genetics , Ligands , Liver/chemistry , Liver/metabolism , Liver Neoplasms/pathology , Mice , Mice, Transgenic , Protein Binding/genetics
8.
Chem Res Toxicol ; 29(10): 1651-1661, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27551952

ABSTRACT

Humans in industrialized areas are continuously exposed to phthalate plasticizers, prompting concerns of their potential toxicities. Previous studies from our laboratory and others have shown that various phthalates activate several mammalian nuclear receptors, in particular the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the peroxisomal proliferator-activated receptors (PPARs), although often at concentration levels of questionable relevance to human exposure. We discovered that di(2-ethylhexyl) phthalate (DEHP) and di-isononyl phthalate (DiNP), two of the highest volume production agents, were potent activators of human CAR2 (hCAR2), a unique human CAR splice variant and, to a lesser degree, human PXR (hPXR). These diphthalates undergo rapid metabolism in mammalian systems, initially to their major monophthalate derivatives MEHP and MiNP. Although MEHP and MiNP are reported activators of the rodent PPARs, with lower affinities for the corresponding human PPARs, it remains unclear whether these monophthalate metabolites activate hCAR2 or hPXR. In this investigation, we assessed the relative activation potential of selected monophthalates and other low molecular weight phthalates against hCAR, the most prominent hCAR splice variants, as well as hPXR and human PPAR. Using transactivation and mammalian two-hybrid protein interaction assays, we demonstrate that these substances indeed activate hCARs and hPXR but to varying degrees. MEHP and MiNP exhibit potent activation of hCAR2 and hPXR with higher affinities for these receptors than for the hPPARs. The rank order potency for MEHP and MiNP was hCAR2 > hPXR > hPPARs. Results from primary hepatocyte experiments also reflect the MEHP and MiNP upregulation of the respective human target genes. We conclude that both di- and monophthalates are potently selective hCAR2 activators and effective hPXR activators. These results implicate these targets as important mediators of selective phthalate effects in humans. The striking differential affinities for these compounds between human and rodent nuclear receptors further implies that biological results obtained from rodent models may be of only limited relevance for interpolating phthalate-mediated effects in humans.


Subject(s)
Phthalic Acids/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Aged , Cells, Cultured , Constitutive Androstane Receptor , Dose-Response Relationship, Drug , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Male , Middle Aged , Molecular Structure , Phthalic Acids/chemistry , Pregnane X Receptor , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Steroid/metabolism , Structure-Activity Relationship
9.
Biochim Biophys Acta ; 1859(9): 1228-1237, 2016 09.
Article in English | MEDLINE | ID: mdl-27080131

ABSTRACT

The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily that functions as a xenosensor, serving to regulate xenobiotic detoxification, lipid homeostasis and energy metabolism. CAR activation is also a key contributor to the development of chemical hepatocarcinogenesis in mice. The underlying pathways affected by CAR in these processes are complex and not fully elucidated. MicroRNAs (miRNAs) have emerged as critical modulators of gene expression and appear to impact many cellular pathways, including those involved in chemical detoxification and liver tumor development. In this study, we used deep sequencing approaches with an Illumina HiSeq platform to differentially profile microRNA expression patterns in livers from wild type C57BL/6J mice following CAR activation with the mouse CAR-specific ligand activator, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP). Bioinformatic analyses and pathway evaluations were performed leading to the identification of 51 miRNAs whose expression levels were significantly altered by TCPOBOP treatment, including mmu-miR-802-5p and miR-485-3p. Ingenuity Pathway Analysis of the differentially expressed microRNAs revealed altered effector pathways, including those involved in liver cell growth and proliferation. A functional network among CAR targeted genes and the affected microRNAs was constructed to illustrate how CAR modulation of microRNA expression may potentially mediate its biological role in mouse hepatocyte proliferation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.


Subject(s)
Gene Regulatory Networks , Hepatocytes/drug effects , Liver Neoplasms/genetics , MicroRNAs/genetics , Pyridines/pharmacology , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Cell Proliferation/drug effects , Computational Biology , Constitutive Androstane Receptor , Gene Expression Profiling , Gene Expression Regulation , Gene Library , Gene Ontology , Hepatocytes/cytology , Hepatocytes/metabolism , High-Throughput Nucleotide Sequencing , Injections, Intraperitoneal , Ligands , Liver/cytology , Liver/drug effects , Liver/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Metabolic Networks and Pathways/genetics , Mice , Mice, Inbred C57BL , MicroRNAs/classification , MicroRNAs/metabolism , Molecular Sequence Annotation , Primary Cell Culture , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction
10.
Toxicol Sci ; 140(2): 283-97, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24812009

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 µg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 µg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 µg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 µg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα.


Subject(s)
Aroclors/toxicity , Base Sequence , Complex Mixtures , DNA Primers , Hep G2 Cells , Humans
11.
Biochem J ; 458(1): 95-107, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24224465

ABSTRACT

The CAR (constitutive androstane receptor; NR1I3) is a critical xenobiotic sensor that regulates xenobiotic metabolism, drug clearance, energy and lipid homoeostasis, cell proliferation and development. Although constitutively active, in hepatocytes CAR is normally held quiescent through a tethering mechanism in the cytosol, anchored to a protein complex that includes several components, including heat-shock protein 90. Release and subsequent nuclear translocation of CAR is triggered through either direct binding to ligand activators such as CITCO {6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime} or through indirect chemical activation, such as with PB (phenobarbital). In the present study, we demonstrate that proteasomal inhibition markedly disrupts CAR function, repressing CAR nuclear trafficking, disrupting CAR's interaction with nuclear co-activators and inhibiting induction of CAR target gene responses in human primary hepatocytes following treatment with either PB or CITCO. Paradoxically, these effects occur following accumulation of ubiquitinated hCAR (human CAR). Furthermore, a non-proteolytic function was indicated by its interaction with a SUG1 (suppressor for Gal1), a subunit of the 26S proteasome. Taken together, these data demonstrate that the proteasome complex functions at multiple levels to regulate the functional biology of hCAR activity.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Base Sequence , Cell Line , Constitutive Androstane Receptor , DNA Primers , Humans , Ubiquitination
12.
Dev Biol ; 384(2): 155-65, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24144921

ABSTRACT

Expression of the constitutive androstane receptor (CAR, NR1I3) is enriched in the mature mammalian liver and increasingly recognized for its prominent role in regulating a myriad of processes including biotransformation, chemical transport, energy metabolism and lipid homeostasis. Previously, we demonstrated that CAR levels were markedly enhanced during the differentiation of hepatic-like cells derived from hESCs, prompting the hypothesis that CAR contributes a key functional role in directing human hepatogenesis. Here we demonstrate that over-expression of CAR in human embryonic stem cells (ESCs), transduced by a lentiviral vector, accelerates the maturation of hepatic-like cells, with CAR over-expressing cells exhibiting a 2.5-fold increase in albumin secretion by day 20 in culture differentiation, and significantly enhanced levels of mRNA expression of several liver-selective markers, including hepatic transcription factors, plasma proteins, biotransformation enzymes, and metabolic enzymes. CAR over-expressing cells also exhibited enhanced CITCO-inducible CYP3A7 enzymatic activity. Knockdown of CAR via siRNA attenuated the differentiation-dependent expression programs. In contrast, expression levels of the pregnane X receptor (PXR), a nuclear receptor most similar to CAR in primary sequence, were negligible in human fetal liver tissues or in the differentiating hESCs, and stable over-expression of PXR in hepatic-induced hESCs failed to enhance expression of hepatic phenotype markers. Together, these results define a novel role for human CAR in hepatic lineage commitment.


Subject(s)
Cell Differentiation/physiology , Liver/cytology , Receptors, Cytoplasmic and Nuclear/physiology , Base Sequence , Cell Line , Constitutive Androstane Receptor , Cytochrome P-450 Enzyme System/genetics , DNA Primers , Embryonic Stem Cells/cytology , Humans , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Small Interfering , Stem Cells/cytology
13.
Toxicol Sci ; 123(2): 550-62, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21778469

ABSTRACT

The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily and functions as an important xenochemical sensor and transcriptional modulator in mammalian cells. Upon chemical activation, CAR undergoes nuclear translocation and heterodimerization with the retinoid X receptor subsequent to its DNA target interaction. CAR is unusual among nuclear receptors in that it possesses a high level of constitutive activity in cell-based assays, obscuring the detection of ligand activators. However, a human splice variant of CAR, termed CAR3, exhibits negligible constitutive activity. In addition, CAR3 is activated by ligands with similar specificity as the reference form of the receptor. In this study, we hypothesized that similar CAR3 receptors could be constructed across various mammalian species' forms of CAR that would preserve species-specific ligand responses, thus enabling a more sensitive and differential screening assessment of CAR response among animal models. A battery of CAR3 receptors was produced in mouse, rat, and dog and comparatively evaluated with selected ligands together with human CAR1 and CAR3 in mammalian cell reporter assays. The results demonstrate that the 5-amino acid insertion that typifies human CAR3 also imparts ligand-activated receptor function in other species' CAR while maintaining signature responses in each species to select CAR ligands. These variant constructs permit in vitro evaluation of differential chemical effector responses across species and coupled with in vivo assays, the species-selective contributions of CAR in normal physiology and in disease processes such as hepatocarcinogenesis.


Subject(s)
Ligands , Receptors, Cytoplasmic and Nuclear/biosynthesis , Receptors, Cytoplasmic and Nuclear/genetics , Amino Acid Substitution , Animals , Cells, Cultured , Constitutive Androstane Receptor , Dogs , Gene Expression Regulation , Hepatocytes/chemistry , Hepatocytes/drug effects , Humans , Itraconazole/pharmacology , Liver/metabolism , Mice , Protein Isoforms , RNA Splice Sites , RNA, Messenger/chemistry , Rats , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
14.
Chem Biol Interact ; 190(1): 62-72, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21241686

ABSTRACT

The limited availability of hepatic tissue suitable for the treatment of liver disease and drug discovery research advances the generation of hepatic-like cells from alternative sources as a valuable approach. In this investigation we exploited a unique hepatic differentiation approach to generate hepatocyte-like cells from human embryonic stem cells (hESCs). hESCs were cultured for 10-20 days on collagen substrate in highly defined and serum free hepatocyte media. The resulting cell populations exhibited hepatic cell-like morphology and were characterized with a variety of biological endpoint analyses. Real-time PCR analysis demonstrated that mRNA expression of the 'stemness' marker genes NANOG and alkaline phosphatase in the differentiated cells was significantly reduced, findings that were functionally validated using alkaline phosphatase activity detection measures. Immunofluorescence studies revealed attenuated levels of the 'stemness' markers OCT4, SOX2, SSEA-3, TRA-1-60, and TRA-1-81 in the hepatic-like cell population. The hepatic character of the cells was evaluated additionally by real-time PCR analyses that demonstrated increased mRNA expression of the hepatic transcription factors FOXA1, C/EBPα, and HNF1α, the nuclear receptors CAR, RXRα, PPARα, and HNF4α, the liver-generated plasma proteins α-fetoprotein, transthyretin, transferrin, and albumin, the protease inhibitor α-1-antitrypsin, metabolic enzymes HMGCS2, PEPCK, and biotransformation enzymes CYP3A7, CYP3A4, CYP3A5, and CYP2E1. Indocyanine green uptake albumin secretion and glycogen storage capacity further confirmed acquisition of hepatic function. These studies define an expeditious methodology that facilitates the differentiation of hESCs along a hepatic lineage and provide a framework for their subsequent use in pharmacological and toxicological research applications requiring a renewable supply of human hepatocytes.


Subject(s)
Embryonic Stem Cells/cytology , Hepatocytes/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Antigens, Surface/metabolism , Antigens, Tumor-Associated, Carbohydrate/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Nanog Homeobox Protein , Octamer Transcription Factor-3/metabolism , Proteoglycans/metabolism , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , SOXB1 Transcription Factors/metabolism , Stage-Specific Embryonic Antigens/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...