Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(14): 5125-5132, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28301722

ABSTRACT

Rhamnolipids are amphiphilic glycolipids biosynthesized by bacteria that, due to their low toxicity and biodegradability, are potential replacements for synthetic surfactants. The previously limited access to pure materials at the gram scale has hindered extensive characterization of rhamnolipid structure-performance behavior. Here, we present an efficient and versatile synthetic methodology from which four diastereomers of the most common monorhamnolipid, α-rhamnopyranosyl-ß-hydroxydecanoyl-ß-hydroxydecanoate, are prepared and subsequently characterized. Exploration of their behavior at the air-water interface is reported and analyzed in terms of the absolute configuration of the lipid tail carbinols at pH 4.0 and 8.0. All diastereomers exhibit a minimum surface tension of about 28 mN/m without a significant difference between the protonated (nonionic) or deprotonated (anionic) states. At pH 4.0 (nonionic), all diastereomers have a critical micelle concentration (CMC) in the micromolar range. At pH 8.0 (anionic), CMC values for the (R,R), (S,S), and (S,R) diastereomers are approximately an order of magnitude higher than in their nonionic states, whereas the (R,S) diastereomer exhibits a CMC about five times larger.

2.
Langmuir ; 29(14): 4441-50, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23406083

ABSTRACT

The rhamnolipid biosurfactants have been considered as possible "green" alternatives to synthetic surfactants due to their greater compatibility with the environment and excellent surface active properties. In order to understand the molecular orientation of rhamnolipids at the air-water interface, a new monorhamnolipid with two octadecyl chains, Rha-C18-C18, has been studied at the air-water interface with polarization modulated-infrared reflection absorption spectroscopy (PM-IRRAS). Since rhamnolipids possess a carboxylic acid, and hence exhibit pH-dependent properties, their water surface orientation is studied in solutions of pH 2, 5, and 8. Rhamnolipids have also been reported to form strong complexes with Pb(2+); thus, the effect of the presence of Pb(2+) on molecular orientation at the interface is also investigated. PM-IRRA spectra indicate an increase in alkyl chain order and a decrease in alkyl chain tilt angle as the surface pressure of the monolayer increases, with pH-independent tilt angles ranging from 63° to 45°. Molecular modeling using Spartan provides insight into the cause of this large tilt angle as being due to the nature of the monorhamnolipid packing at the air-water interface as dictated by its large hydrophilic headgroup.


Subject(s)
Air , Glycolipids/chemistry , Water/chemistry , Electromagnetic Phenomena , Hydrogen-Ion Concentration , Lead/chemistry , Models, Molecular , Molecular Conformation , Spectrophotometry, Infrared , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...