Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Microlife ; 5: uqae008, 2024.
Article in English | MEDLINE | ID: mdl-38665235

ABSTRACT

On September 20-22 September 2023, the international conference 'Microbiology 2023: from single cell to microbiome and host' convened microbiologists from across the globe for a very successful symposium, showcasing cutting-edge research in the field. Invited lecturers delivered exceptional presentations covering a wide range of topics, with a major emphasis on phages and microbiomes, on the relevant bacteria within these ecosystems, and their multifaceted roles in diverse environments. Discussions also spanned the intricate analysis of fundamental bacterial processes, such as cell division, stress resistance, and interactions with phages. Organized by four renowned Academies, the German Leopoldina, the French Académie des sciences, the Royal Society UK, and the Royal Swedish Academy of Sciences, the symposium provided a dynamic platform for experts to share insights and discoveries, leaving participants inspired and eager to integrate new knowledge into their respective projects. The success of Microbiology 2023 prompted the decision to host the next quadrennial academic meeting in Sweden. This choice underscores the commitment to fostering international collaboration and advancing the frontiers of microbiological knowledge. The transition to Sweden promises to be an exciting step in the ongoing global dialogue and specific collaborations on microbiology, a field where researchers will continue to push the boundaries of knowledge, understanding, and innovation not only in health and disease but also in ecology.

2.
Annu Rev Microbiol ; 77: 1-22, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713460

ABSTRACT

My scientific career has resulted from key decisions and reorientations, sometimes taken rapidly but not always, guided by discussions or collaborations with amazing individuals from whom I learnt a lot scientifically and humanly. I had never anticipated that I would accomplish so much in what appeared as terra incognita when I started to interrogate the mechanisms underlying the virulence of the bacterium Listeria monocytogenes. All this has been possible thanks to a number of talented team members who ultimately became friends.


Subject(s)
Listeria , Humans , Models, Biological , Bacteria , Virulence
3.
Microlife ; 4: uqac026, 2023.
Article in English | MEDLINE | ID: mdl-37251515

ABSTRACT

In September 2022, an international summer course entitled 'The new microbiology' took place in Greece, on the island of Spetses. The organizers aimed to highlight the spectacular advances and the renaissance occurring in Microbiology, driven by developments in genomics, proteomics, imaging techniques, and bioinformatics. Combinations of these advances allow for single cell analyses, rapid and relatively inexpensive metagenomic and transcriptomic data analyses and comparisons, visualization of previously unsuspected mechanisms, and large-scale studies. A 'New Microbiology' is emerging which allows studies that address the critical roles of microbes in health and disease, in humans, animals, and the environment. The concept of one health is now transforming microbiology. The goal of the course was to discuss all these topics with members of the new generation of microbiologists all of whom were highly motivated and fully receptive.

4.
Sci Rep ; 12(1): 21961, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36535993

ABSTRACT

L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.


Subject(s)
RNA-Binding Proteins , Tumor Suppressor Proteins , Virulence Factors , Humans , Bacteria/metabolism , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , RNA Splicing Factors , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Virulence Factors/metabolism , Listeria monocytogenes
5.
Dis Model Mech ; 15(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36504390
6.
J Infect Dis ; 225(6): 1005-1010, 2022 03 15.
Article in English | MEDLINE | ID: mdl-32582947

ABSTRACT

The bacterial pathogen Listeria monocytogenes invades host cells, ruptures the internalization vacuole, and reaches the cytosol for replication. A high-content small interfering RNA (siRNA) microscopy screen allowed us to identify epithelial cell factors involved in L. monocytogenes vacuolar rupture, including the serine/threonine kinase Taok2. Kinase activity inhibition using a specific drug validated a role for Taok2 in favoring L. monocytogenes cytoplasmic access. Furthermore, we showed that Taok2 recruitment to L. monocytogenes vacuoles requires the presence of pore-forming toxin listeriolysin O. Overall, our study identified the first set of host factors modulating L. monocytogenes vacuolar rupture and cytoplasmic access in epithelial cells.


Subject(s)
Listeria monocytogenes , Listeriosis , Bacterial Proteins , Cytoplasm , Cytosol , Hemolysin Proteins , Humans , Listeriosis/microbiology , Vacuoles/microbiology , Vacuoles/physiology
7.
C R Biol ; 345(3): 1-5, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36852592
8.
Cell Rep ; 37(6): 109989, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758302

ABSTRACT

Mutations in mitochondrial genes impairing energy production cause mitochondrial diseases (MDs), and clinical studies have shown that MD patients are prone to bacterial infections. However, the relationship between mitochondrial (dys)function and infection remains largely unexplored, especially in epithelial cells, the first barrier to many pathogens. Here, we generate an epithelial cell model for one of the most common mitochondrial diseases, Leigh syndrome, by deleting surfeit locus protein 1 (SURF1), an assembly factor for respiratory chain complex IV. We use this genetic model and a complementary, nutrient-based approach to modulate mitochondrial respiration rates and show that impaired mitochondrial respiration favors entry of the human pathogen Listeria monocytogenes, a well-established bacterial infection model. Reversely, enhanced mitochondrial energy metabolism decreases infection efficiency. We further demonstrate that endocytic recycling is reduced in mitochondrial respiration-dependent cells, dampening L. monocytogenes infection by slowing the recycling of its host cell receptor c-Met, highlighting a previously undescribed role of mitochondrial respiration during infection.


Subject(s)
Colonic Neoplasms/microbiology , Listeria monocytogenes/physiology , Listeriosis/prevention & control , Membrane Proteins/metabolism , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Respiration , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Energy Metabolism , HCT116 Cells , Humans , Listeriosis/microbiology , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Proto-Oncogene Proteins c-met/genetics
9.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34599102

ABSTRACT

Listeriolysin S (LLS) is a thiazole/oxazole-modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.


Subject(s)
Bacteriocins/metabolism , Cell Membrane/metabolism , Hemolysin Proteins/metabolism , Listeria monocytogenes/metabolism , Adenosine Triphosphate/metabolism , Cytoplasm/metabolism
10.
C R Biol ; 344(1): 1-5, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34213844

Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2
11.
C R Biol ; 344(2): 177-187, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34213855

ABSTRACT

The advent of high throughput sequencing approaches and ancient DNA techniques have enabled reconstructing the history of human populations at an unprecedented level of resolution. The symposium from the French Academy of Sciences "50,000 ans d'épopée humaine dans notre ADN" has reviewed some of the latest contributions from the fields of genomics, archaeology, and linguistics to our understanding of >300,000 years of human history. DNA has revealed the richness of the human journey, from the deep divergences between human populations in Africa, to the first encounters of Homo Sapiens with other hominins on their way to Eurasia and the peopling of Remote Oceania. The symposium has also emphasized how migrations, cultural practices, and environmental pathogens have contributed to shape the genetic diversity of modern humans, through admixture, genetic drift or genetic adaptation. Finally, special attention was also given to how human behaviours have shaped the genome of other species, through the spreading of microbes and pathogens, as in the case of Yersinia Pestis, or through domestication, as elegantly demonstrated for dogs, horses, and apples. Altogether, this conference illustrated how the complex history of human populations is tightly linked with their contemporary genetic diversity that, in turn, has direct effects on their identity and health.


L'avènement des approches de séquençage à haut débit et des techniques de séquençage de l'ADN ancien ont permis de reconstruire l'histoire des populations humaines à un niveau de résolution sans précédent. Le symposium de l'Académie des sciences « 50 000 ans d'épopée humaine dans notre ADN ¼ a passé en revue certaines des dernières contributions de la génomique, de l'archéologie et de la linguistique à notre compréhension de plus de 300 000 ans d'histoire humaine. L'ADN a révélé la richesse du parcours humain, depuis les premières séparations entre populations humaines en Afrique jusqu'à la rencontre d'Homo sapiens avec d'autres hominidés sur leur chemin vers l'Eurasie et le peuplement de l'Océanie lointaine. Le symposium a également mis l'accent sur la façon dont les migrations, les pratiques culturelles et les agents pathogènes environnementaux ont contribué à façonner la diversité génétique des humains modernes, par le biais du brassage, de la dérive ou de l'adaptation génétique. Enfin, une attention particulière a également été accordée à la manière dont les comportements humains ont façonné le génome d'autres espèces, par la propagation de microbes et d'agents pathogènes, comme dans le cas de Yersinia pestis, ou par la domestication, comme cela a été démontré de manière élégante pour les chiens, les chevaux et les pommes. Dans l'ensemble, cette conférence a illustré comment la diversité génétique contemporaine des populations humaines est étroitement liée à leur histoire complexe et, à son tour, a des effets directs sur leur identité et leur santé.


Subject(s)
DNA , Genomics , Africa , Animals , Archaeology , Dogs , Genome , Genome, Human , History, Ancient , Horses , Humans
13.
C R Biol ; 343(3): 267-293, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33621456

ABSTRACT

Insects appeared more than 400 million years ago and they represent the richest and most diverse taxonomic group with several million species. Yet, under the combined effect of the loss of natural habitats, the intensification of agriculture with massive use of pesticides, global warming and biological invasions, insects show alarming signs of decline. Although difficult to quantify, species extinction and population reductions are confirmed for many ecosystems. This results in a loss of services such as the pollination of plants, including food crops, the recycling of organic matter, the supply of goods such as honey and the stability of food webs. It is therefore urgent to halt the decline of Insects. We recommend implementing long-term monitoring of populations, tackling the causes of insect decline by reducing the use of synthetic insecticides, preserving natural habitats, and reinventing a positive relationship between humans and insects.


Apparus il y a plus de 400 millions d'années, les Insectes représentent le groupe taxonomique le plus riche et diversifié, avec plusieurs millions d'espèces. Sous l'effet de la disparition des habitats, de l'intensification de l'agriculture avec l'usage massif des pesticides, du réchauffement climatique et des invasions biologiques, les Insectes montrent des signes alarmants de déclin. Bien que difficiles à quantifier, la disparition des espèces et la réduction de leurs populations sont avérées et communes à de nombreux écosystèmes. Elles se traduisent par une perte des services rendus, comme la pollinisation des plantes vivrières, le recyclage de la matière organique, la fourniture de biens comme le miel, et l'équilibre des réseaux trophiques. Il est donc urgent de freiner le déclin des Insectes. Pour cela, il faut mettre en œuvre des suivis à long terme des populations, réduire l'usage des insecticides de synthèse, préserver les habitats naturels, et réinventer la relation de l'Homme à l'Insecte en revalorisant son image et ses usages.


Subject(s)
Biodiversity , Ecosystem , Agriculture , Animals , Extinction, Biological , Humans , Insecta , Pollination
14.
Methods Mol Biol ; 2220: 189-200, 2021.
Article in English | MEDLINE | ID: mdl-32975776

ABSTRACT

Listeria monocytogenes is a model intracellular pathogen that can invade the cytoplasm of host mammalian cells. Cellular invasion can be measured using standard techniques, such as the classical gentamicin protection assay, based on the quantification of colony-forming units from lysates of infected cells. In addition, there are methods based on immunofluorescence microscopy which allow for assaying invasion in a medium- to high-throughput manner. In the following sections, we detail two different assays that can be used alone or in combination to quantify the internalization of L. monocytogenes in host cells.


Subject(s)
Listeria monocytogenes/physiology , Listeriosis/pathology , Bacterial Load/methods , Colony Count, Microbial/methods , HeLa Cells , Host-Pathogen Interactions , Humans , Listeriosis/microbiology , Staining and Labeling/methods
17.
Nature ; 580(7805): E20, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32350466

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Toxins (Basel) ; 12(5)2020 05 05.
Article in English | MEDLINE | ID: mdl-32380645

ABSTRACT

During infection, the foodborne bacterial pathogen Listeria monocytogenes dynamically influences the gene expression profile of host cells. Infection-induced transcriptional changes are a typical feature of the host-response to bacteria and contribute to the activation of protective genes such as inflammatory cytokines. However, by using specialized virulence factors, bacterial pathogens can target signaling pathways, transcription factors, and epigenetic mechanisms to alter host gene expression, thereby reprogramming the response to infection. Therefore, the transcriptional profile that is established in the host is delicately balanced between antibacterial responses and pathogenesis, where any change in host gene expression might significantly influence the outcome of infection. In this review, we discuss the known transcriptional and epigenetic processes that are engaged during Listeria monocytogenes infection, the virulence factors that can remodel them, and the impact these processes have on the outcome of infection.


Subject(s)
Cellular Reprogramming , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Transcription, Genetic , Virulence Factors/metabolism , Animals , Epigenesis, Genetic , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Listeriosis/genetics , Listeriosis/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence , Virulence Factors/genetics
19.
Nat Commun ; 11(1): 1344, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165618

ABSTRACT

The intestinal microbiota modulates host physiology and gene expression via mechanisms that are not fully understood. Here we examine whether host epitranscriptomic marks are affected by the gut microbiota. We use methylated RNA-immunoprecipitation and sequencing (MeRIP-seq) to identify N6-methyladenosine (m6A) modifications in mRNA of mice carrying conventional, modified, or no microbiota. We find that variations in the gut microbiota correlate with m6A modifications in the cecum, and to a lesser extent in the liver, affecting pathways related to metabolism, inflammation and antimicrobial responses. We analyze expression levels of several known writer and eraser enzymes, and find that the methyltransferase Mettl16 is downregulated in absence of a microbiota, and one of its target mRNAs, encoding S-adenosylmethionine synthase Mat2a, is less methylated. We furthermore show that Akkermansia muciniphila and Lactobacillus plantarum affect specific m6A modifications in mono-associated mice. Our results highlight epitranscriptomic modifications as an additional level of interaction between commensal bacteria and their host.


Subject(s)
Adenosine/analogs & derivatives , Cecum/metabolism , Gastrointestinal Microbiome , Liver/metabolism , Adenosine/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Cecum/microbiology , Female , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
20.
mBio ; 11(1)2020 02 04.
Article in English | MEDLINE | ID: mdl-32019800

ABSTRACT

Mitochondrial function adapts to cellular demands and is affected by the ability of the organelle to undergo fusion and fission in response to physiological and nonphysiological cues. We previously showed that infection with the human bacterial pathogen Listeria monocytogenes elicits transient mitochondrial fission and a drop in mitochondrion-dependent energy production through a mechanism requiring the bacterial pore-forming toxin listeriolysin O (LLO). Here, we performed quantitative mitochondrial proteomics to search for host factors involved in L. monocytogenes-induced mitochondrial fission. We found that Mic10, a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex, is significantly enriched in mitochondria isolated from cells infected with wild-type but not with LLO-deficient L. monocytogenes Increased mitochondrial Mic10 levels did not correlate with upregulated transcription, suggesting a posttranscriptional mechanism. We then showed that Mic10 is necessary for L. monocytogenes-induced mitochondrial network fragmentation and that it contributes to L. monocytogenes cellular infection independently of MICOS proteins Mic13, Mic26, and Mic27. In conclusion, investigation of L. monocytogenes infection allowed us to uncover a role for Mic10 in mitochondrial fission.IMPORTANCE Pathogenic bacteria can target host cell organelles to take control of key cellular processes and promote their intracellular survival, growth, and persistence. Mitochondria are essential, highly dynamic organelles with pivotal roles in a wide variety of cell functions. Mitochondrial dynamics and function are intimately linked. Our previous research showed that Listeria monocytogenes infection impairs mitochondrial function and triggers fission of the mitochondrial network at an early infection stage, in a process that is independent of the presence of the main mitochondrial fission protein Drp1. Here, we analyzed how mitochondrial proteins change in response to L. monocytogenes infection and found that infection raises the levels of Mic10, a mitochondrial inner membrane protein involved in formation of cristae. We show that Mic10 is important for L. monocytogenes-dependent mitochondrial fission and infection of host cells. Our findings thus offer new insight into the mechanisms used by L. monocytogenes to hijack mitochondria to optimize host infection.


Subject(s)
Listeria monocytogenes/genetics , Mitochondria/pathology , Mitochondrial Dynamics , Mitochondrial Proteins/genetics , HCT116 Cells , Humans , Listeria monocytogenes/pathogenicity , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Proteomics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...