Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 147(1): 72, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634969

ABSTRACT

Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Pathogenic variants in the nebulin gene (NEB) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking curative therapies. In this study, we examined a cohort of ten NEM2 patients, each with unique pathogenic variants, aiming to understand their impact on mRNA, protein, and functional levels. Results show that pathogenic truncation variants affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with pathogenic splicing variants that are expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with either relatively normal or markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, or reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a pathogenic duplication variant in nebulin that resulted in a four-copy gain in the triplicate region of NEB and a much larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type 1 muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87 to 318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from pathogenic splicing variants. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.


Subject(s)
Myopathies, Nemaline , Urea , Humans , Actins , Muscle Weakness , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myopathies, Nemaline/drug therapy , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Urea/analogs & derivatives , Muscle Proteins/genetics , Muscle Proteins/metabolism
2.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38187705

ABSTRACT

Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Mutations in the nebulin gene ( NEB ) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking therapies targeting the underlying pathological mechanisms. In this study, we examined a cohort of ten NEM2 patients, each with unique mutations, aiming to understand their impact on mRNA, protein, and functional levels. Results show that truncation mutations affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with splicing mutations which is expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with relatively normal nebulin levels and others with markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, and a positive relation between the reduction in nebulin level and the reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a duplication mutation in nebulin that resulted in a larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type I muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87-318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from splicing mutations. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.

3.
Arch Pathol Lab Med ; 140(1): 51-65, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26132600

ABSTRACT

CONTEXT: There is no current standard among myopathologists for reporting muscle biopsy findings. The National Institute of Neurological Disorders and Stroke has recently launched a common data element (CDE) project to standardize neuromuscular data collected in clinical reports and to facilitate their use in research. OBJECTIVE: To develop a more-uniform, prospective reporting tool for muscle biopsies, incorporating the elements identified by the CDE project, in an effort to improve reporting and educational resources. DESIGN: The variation in current biopsy reporting practice was evaluated through a study of 51 muscle biopsy reports from self-reported diagnoses of genetically confirmed or undiagnosed muscle disease from the Congenital Muscle Disease International Registry. Two reviewers independently extracted data from deidentified reports and entered them into the revised CDE format to identify what was missing and whether or not information provided on the revised CDE report (complete/incomplete) could be successfully interpreted by a neuropathologist. RESULTS: Analysis of the data highlighted showed (1) inconsistent reporting of key clinical features from referring physicians, and (2) considerable variability in the reporting of pertinent positive and negative histologic findings by pathologists. CONCLUSIONS: We propose a format for muscle-biopsy reporting that includes the elements in the CDE checklist and a brief narrative comment that interprets the data in support of a final interpretation. Such a format standardizes cataloging of pathologic findings across the spectrum of muscle diseases and serves emerging clinical care and research needs with the expansion of genetic-testing therapeutic trials.


Subject(s)
Neuromuscular Diseases/diagnosis , Pathology, Surgical/standards , Research Design/standards , Biopsy , Common Data Elements , Humans , National Institute of Neurological Disorders and Stroke (U.S.) , United States
4.
J Vis Exp ; (95): 52307, 2015 Jan 18.
Article in English | MEDLINE | ID: mdl-25651101

ABSTRACT

The generation of patient-specific cell lines represents an invaluable tool for diagnostic or translational research, and these cells can be collected from skin or muscle biopsy tissue available during the patient's diagnostic workup. In this protocol, we describe a technique for live cell isolation from small amounts of muscle or skin tissue for primary cell culture. Additionally, we provide a technique for the immortalization of myogenic cell lines and fibroblast cell lines from primary cells. Once cell lines are immortalized, substantial expansion of patient-derived cells can be achieved. Immortalized cells are amenable to many downstream applications, including drug screening and in vitro correction of the genetic mutation. Altogether, these protocols provide a reliable tool to generate and preserve patient-derived cells for downstream applications.


Subject(s)
Cytological Techniques/methods , Fibroblasts/cytology , Molecular Diagnostic Techniques/methods , Muscles/cytology , Skin/cytology , Biopsy/methods , Cell Line , Cell Separation/methods , Humans
5.
J Vis Exp ; (89)2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25078247

ABSTRACT

Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease.


Subject(s)
Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Muscular Diseases/congenital , Muscular Diseases/pathology , Tissue Fixation/methods , Animals , Cell Culture Techniques/methods , Disease Models, Animal , Freezing , Mice , Muscle, Skeletal/pathology , Phenotype
6.
Birth Defects Res A Clin Mol Teratol ; 91(7): 631-41, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21630424

ABSTRACT

BACKGROUND: Geographic variation may be an indicator of risk factors for birth defects. This study models the geographic distribution of three complex congenital heart defects (CHDs) in eastern Wisconsin, and evaluates effects of demographic census variables linked to geographic location. METHODS: Cases of Hypoplastic Left Heart Syndrome (HLHS), Tetralogy of Fallot (TOF) and d-Transposition of the Great Arteries (d-TGAs) born between1995 and 2004 were identified from three medical centers serving eastern Wisconsin. Case diagnoses were assigned by a pediatric cardiologist using echocardiographic records. Births by ZIP code were obtained from the State of Wisconsin. ZIP Code demographic variables were derived from 2000 census data. Numbers of cardiac defects by ZIP code were modeled using cluster analysis and Poisson generalized additive models (GAMs) for spatial coordinates including all and white only cases (excluding trisomies). GAM analyses were repeated adjusting for census variables. RESULTS: Four hundred forty-eight cases were ascertained. A significant south-to-north spatial gradient for HLHS, TOF, and combined CHDs, but not d-TGAs was identified. This gradient remained significant when census variables were included in the model for the full sample. In the analysis excluding non-white cases, findings were the same for TOF, combined CHDs, and d-TGAs. However, the geographic gradient for HLHS was not significant in the adjusted model. CONCLUSIONS: A south-to-north gradient was apparent for two of three complex CHDs in eastern Wisconsin. For white cases, demographic variation seems to explain some of this spatial gradient in HLHS. Further studies are needed to confirm demographic and other risk factors underlying this geographic gradient.


Subject(s)
Heart Defects, Congenital/epidemiology , Censuses , Humans , Hypoplastic Left Heart Syndrome/epidemiology , Models, Theoretical , Risk Factors , Tetralogy of Fallot/epidemiology , Wisconsin/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...