Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genes (Basel) ; 14(5)2023 05 09.
Article in English | MEDLINE | ID: mdl-37239421

ABSTRACT

By targeting mRNA transcripts, non-coding small RNAs (sRNAs) regulate the expression of genes governing a wide range of bacterial functions. In the social myxobacterium Myxococcus xanthus, the sRNA Pxr serves as a gatekeeper of the regulatory pathway controlling the life-cycle transition from vegetative growth to multicellular fruiting body development. When nutrients are abundant, Pxr prevents the initiation of the developmental program, but Pxr-mediated inhibition is alleviated when cells starve. To identify genes essential for Pxr function, a developmentally defective strain in which Pxr-mediated blockage of development is constitutively active (strain "OC") was transposon-mutagenized to identify suppressor mutations that inactivate or bypass Pxr inhibition and thereby restore development. One of the four loci in which a transposon insertion restored development is rnd, encoding the Ribonuclease D protein (RNase D). RNase D is an exonuclease important for tRNA maturation. Here, we show that disruption of rnd abolishes the accumulation of Pxr-S, the product of Pxr processing from a longer precursor form (Pxr-L) and the active inhibitor of development. Additionally, the decrease in Pxr-S caused by rnd disruption was associated with increased accumulation primarily of a longer novel Pxr-specific transcript (Pxr-XL) rather than of Pxr-L. The introduction of a plasmid expressing rnd reverted cells back to OC-like phenotypes in development and Pxr accumulation, indicating that a lack of RNase D alone suppresses the developmental defect of OC. Moreover, an in vitro Pxr-processing assay demonstrated that RNase D processes Pxr-XL into Pxr-L; this implies that overall, Pxr sRNA maturation requires a sequential two-step processing. Collectively, our results indicate that a housekeeping ribonuclease plays a central role in a model form of microbial aggregative development. To our knowledge, this is the first evidence implicating RNase D in sRNA processing.


Subject(s)
Myxococcales , RNA, Small Untranslated , Ribonuclease III/genetics , RNA, Bacterial/genetics , Myxococcales/genetics , Suppression, Genetic , RNA, Small Untranslated/genetics
2.
PLoS One ; 14(11): e0224817, 2019.
Article in English | MEDLINE | ID: mdl-31774841

ABSTRACT

In some species of myxobacteria, adjacent cells sufficiently similar at the adhesin protein TraA can exchange components of their outer membranes. The primary benefits of such outer membrane exchange (OME) in natural populations are unclear, but in some OME interactions, transferred OM content can include SitA toxins that kill OME participants lacking an appropriate immunity gene. Such OME-dependent toxin transfer across Myxococcus xanthus strains that differ only in their sitBAI toxin/antitoxin cassette can mediate inter-strain killing and generate colony-merger incompatibilities (CMIs)-inter-colony border phenotypes between distinct genotypes that differ from respective self-self colony interfaces. Here we ask whether OME-dependent toxin transfer is a common cause of prevalent CMIs and antagonisms between M. xanthus natural isolates identical at TraA. We disrupted traA in eleven isolates from a cm-scale soil population and assayed whether traA disruption eliminated or reduced CMIs between swarming colonies or antagonisms between strains in mixed cultures. Among 33 isolate pairs identical at traA that form clear CMIs, in no case did functional disruption of traA in one partner detectably alter CMI phenotypes. Further, traA disruption did not alleviate strong antagonisms observed during starvation-induced fruiting-body development in seven pairs of strains identical at traA. Collectively, our results suggest that most mechanisms of interference competition and inter-colony kin discrimination in natural populations of myxobacteria do not require OME. Finally, our experiments also indicate that several closely related laboratory reference strains kill some natural isolates by toxins delivered by a shared, OME-independent type VI secretion system (T6SS), suggesting that some antagonisms between sympatric natural isolates may also involve T6SS toxins.


Subject(s)
Cell Membrane/metabolism , Myxococcus xanthus/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Toxins/metabolism , Gene Deletion , Microbial Viability , Models, Biological , Myxococcus xanthus/genetics , Myxococcus xanthus/isolation & purification , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL