Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38608703

ABSTRACT

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Subject(s)
BRCA2 Protein , Breast Neoplasms , Glycolysis , Pyruvaldehyde , Animals , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , Mice , Humans , Female , Pyruvaldehyde/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Haploinsufficiency , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Mutation , DNA Damage , DNA Repair , Cell Line, Tumor
2.
Sci Rep ; 14(1): 4997, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424415

ABSTRACT

Post-COVID-19 syndrome is a serious complication following SARS-CoV-2 infection, characterized primarily by fatigue and cognitive complaints. Although first metabolic and structural imaging alterations in Post-COVID-19 syndrome have been identified, their functional consequences remain unknown. Thus, we explored the impact of Post-COVID-19 syndrome on the functional connectome of the brain providing a deeper understanding of pathophysiological mechanisms. In a cross-sectional observational study, resting-state functional magnetic resonance imaging data of 66 patients with Post-COVID-19 syndrome after mild infection (mean age 42.3 years, 57 female) and 57 healthy controls (mean age 42.1 years, 38 female) with a mean time of seven months after acute COVID-19 were analysed using a graph theoretical approach. Network features were quantified using measures including mean distance, nodal degree, betweenness and Katz centrality, and compared between both groups. Graph measures were correlated with clinical measures quantifying fatigue, cognitive function, affective symptoms and sleep disturbances. Alterations were mainly found in the brainstem, olfactory cortex, cingulate cortex, thalamus and cerebellum on average seven months after SARS-CoV-2 infection. Additionally, strong correlations between fatigue severity, cognitive functioning and daytime sleepiness from clinical scales and graph measures were observed. Our study confirms functional relevance of brain imaging changes in Post-COVID-19 syndrome as mediating factors for persistent symptoms and improves our pathophysiological understanding.


Subject(s)
COVID-19 , Connectome , Adult , Female , Humans , Connectome/methods , Cross-Sectional Studies , Fatigue/etiology , Magnetic Resonance Imaging/methods , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Male
4.
Front Neurol ; 14: 1195694, 2023.
Article in English | MEDLINE | ID: mdl-37808485

ABSTRACT

Introduction: Assessment methods for physical activity and fitness are of upmost importance due to the possible beneficial effect of physical conditioning on neurodegenerative diseases. The implementation of these methods can be challenging when examining elderly or cognitively impaired participants. In the presented study, we compared three different assessment methods for physical activity from the Dementia-MOVE trial, a 6-months intervention study on physical activity in Alzheimer's disease. The aim was to determine the comparability of physical activity assessments in elderly participants with cognitive impairment due to Alzheimer's disease. Material or methods: 38 participants (mean age 70 ± 7 years) with early-stage Alzheimer's disease (mean MoCA 18.84 ± 4.87) were assessed with (1) fitness trackers for an average of 12 (± 6) days, (2) a written diary on daily activities and (3) a questionnaire on physical activity at three intervention timepoints. For comparison purposes, we present a transformation and harmonization method of the physical assessment output parameters: Metabolic equivalent of task (MET) scores, activity intensity minutes, calorie expenditure and moderate-to-vigorous physical activity (MVPA) scores were derived from all three modalities. The resulting parameters were compared for absolute differences, correlation, and their influence by possible mediating factors such as cognitive state and markers from cerebrospinal fluid. Results: Participants showed high acceptance and compliance to all three assessment methods. MET scores and MVPA from fitness trackers and diaries showed high overlap, whilst results from the questionnaire suggest that participants tended to overestimate their physical activity in the long-term retrospective assessment. All activity parameters were independent of the tested Alzheimer's disease parameters, showing that not only fitness trackers, but also diaries can be successfully applied for physical activity assessment in a sample affected by early-stage Alzheimer's disease. Discussion: Our results show that fitness trackers and physical activity diaries have the highest robustness, leading to a highly comparable estimation of physical activity in people with Alzheimer's disease. As assessed parameters, it is recommendable to focus on MET, MVPA and on accelerometric sensor data such as step count, and less on activity calories and different activity intensities which are dependent on different variables and point to a lower reliability.

6.
Free Radic Biol Med ; 205: 244-261, 2023 08 20.
Article in English | MEDLINE | ID: mdl-37295539

ABSTRACT

Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Reperfusion Injury , Mice , Animals , Superoxides/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Mitochondria/metabolism , Oxidative Stress , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Coronary Artery Disease/metabolism , Energy Metabolism , Ischemia/metabolism , Reperfusion , Fatty Acids/metabolism , Infarction/complications , Infarction/metabolism
7.
EClinicalMedicine ; 58: 101874, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36873426

ABSTRACT

Background: Post-COVID syndrome is a severe long-term complication of COVID-19. Although fatigue and cognitive complaints are the most prominent symptoms, it is unclear whether they have structural correlates in the brain. We therefore explored the clinical characteristics of post-COVID fatigue, describe associated structural imaging changes, and determine what influences fatigue severity. Methods: We prospectively recruited 50 patients from neurological post-COVID outpatient clinics (age 18-69 years, 39f/8m) and matched non-COVID healthy controls between April 15 and December 31, 2021. Assessments included diffusion and volumetric MR imaging, neuropsychiatric, and cognitive testing. At 7.5 months (median, IQR 6.5-9.2) after the acute SARS-CoV-2 infection, moderate or severe fatigue was identified in 47/50 patients with post-COVID syndrome who were included in the analyses. As a clinical control group, we included 47 matched multiple sclerosis patients with fatigue. Findings: Our diffusion imaging analyses revealed aberrant fractional anisotropy of the thalamus. Diffusion markers correlated with fatigue severity, such as physical fatigue, fatigue-related impairment in everyday life (Bell score) and daytime sleepiness. Moreover, we observed shape deformations and decreased volumes of the left thalamus, putamen, and pallidum. These overlapped with the more extensive subcortical changes in MS and were associated with impaired short-term memory. While fatigue severity was not related to COVID-19 disease courses (6/47 hospitalised, 2/47 with ICU treatment), post-acute sleep quality and depressiveness emerged as associated factors and were accompanied by increased levels of anxiety and daytime sleepiness. Interpretation: Characteristic structural imaging changes of the thalamus and basal ganglia underlie the persistent fatigue experienced by patients with post-COVID syndrome. Evidence for pathological changes to these subcortical motor and cognitive hubs provides a key to the understanding of post-COVID fatigue and related neuropsychiatric complications. Funding: Deutsche Forschungsgemeinschaft (DFG) and German Ministry of Education and Research (BMBF).

8.
Nature ; 615(7952): 490-498, 2023 03.
Article in English | MEDLINE | ID: mdl-36890227

ABSTRACT

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Subject(s)
Fumarate Hydratase , Interferon-beta , Macrophages , Mitochondria , RNA, Mitochondrial , Humans , Argininosuccinate Synthase/metabolism , Argininosuccinic Acid/metabolism , Aspartic Acid/metabolism , Cell Respiration , Cytosol/metabolism , Fumarate Hydratase/antagonists & inhibitors , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Fumarates/metabolism , Interferon-beta/biosynthesis , Interferon-beta/immunology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Lupus Erythematosus, Systemic/enzymology , Macrophages/enzymology , Macrophages/immunology , Macrophages/metabolism , Membrane Potential, Mitochondrial , Metabolomics , Mitochondria/genetics , Mitochondria/metabolism , RNA, Mitochondrial/metabolism
9.
Nature ; 615(7952): 499-506, 2023 03.
Article in English | MEDLINE | ID: mdl-36890229

ABSTRACT

Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.


Subject(s)
DNA, Mitochondrial , Fumarates , Immunity, Innate , Mitochondria , Animals , Mice , DNA, Mitochondrial/metabolism , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Fumarates/metabolism , Mitochondria/enzymology , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Kidney/enzymology , Kidney/metabolism , Kidney/pathology , Cytosol/metabolism
10.
FEBS Lett ; 597(2): 246-261, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36217875

ABSTRACT

The compartmentation and distribution of metabolites between mitochondria and the rest of the cell is a key parameter of cell signalling and pathology. Here, we have developed a rapid fractionation procedure that enables us to take mouse heart and liver from in vivo and within ~ 30 s stabilise the distribution of metabolites between mitochondria and the cytosol by rapid cooling, homogenisation and dilution. This is followed by centrifugation of mitochondria through an oil layer to separate mitochondrial and cytosolic fractions for subsequent metabolic analysis. Using this procedure revealed the in vivo compartmentation of mitochondrial metabolites and will enable the assessment of the distribution of metabolites between the cytosol and mitochondria during a range of situations in vivo.


Subject(s)
Heart , Mitochondria , Mice , Animals , Cytosol/metabolism , Liver/metabolism , Mitochondria, Liver/metabolism , Mitochondria, Heart/metabolism , Cell Fractionation/methods
11.
Nat Commun ; 13(1): 7830, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539415

ABSTRACT

Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Amino Acids, Branched-Chain , Nitrogen , Kidney Neoplasms/genetics , Arginine/metabolism , Cell Line, Tumor
12.
Neurol Res Pract ; 4(1): 47, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36184630

ABSTRACT

BACKGROUND: Several non-motor symptoms are present in Parkinson's disease (PD), including increasing prevalence rates of cognitive impairment during disease progression. Due to its multifaceted nature, PD management involves pharmacotherapy and non-pharmacotherapies, ideally in a multidisciplinary manner. Evidence regarding the impact of multidisciplinary interventions on motor and non-motor symptoms, as well as its impact on quality of life and daily activities of living, is limited. METHODS: The aim of this real-life exploratory study was to investigate the effectiveness of a three-week clinical multidisciplinary Parkinson complex therapy (Parkinson-Komplexbehandlung, PKB), which is available as standard care for PD in the German health care system. Especially, the effect of neuropsychological attention training of 40 patients with PD was analyzed concerning their impact on motor abilities (UPDRS-III ON state), cognitive profiles and reported depressive symptoms and psychosocial function. RESULTS: Neuropsychological data showed an improvement in response inhibition after intervention (z = - 2.611, p = 0.009). Additionally, improvements in verbal memory (z = - 2.318, p = 0.020), motor functions (UPDRS-III-score; z = - 5.163, p < 0.001) and reduction in depression symptoms (BDI-II) (z = - 2.944, p = 0.003) were also present. CONCLUSIONS: Patients with PD benefited from this multidisciplinary Parkinson complex therapy in terms of improved cognitive functioning, including attention and verbal learning, motor symptoms and emotional well-being.

13.
Nat Metab ; 4(6): 672-682, 2022 06.
Article in English | MEDLINE | ID: mdl-35726026

ABSTRACT

Angiogenesis, the process by which endothelial cells (ECs) form new blood vessels from existing ones, is intimately linked to the tissue's metabolic milieu and often occurs at nutrient-deficient sites. However, ECs rely on sufficient metabolic resources to support growth and proliferation. How endothelial nutrient acquisition and usage are regulated is unknown. Here we show that these processes are instructed by Yes-associated protein 1 (YAP)/WW domain-containing transcription regulator 1 (WWTR1/TAZ)-transcriptional enhanced associate domain (TEAD): a transcriptional module whose function is highly responsive to changes in the tissue environment. ECs lacking YAP/TAZ or their transcriptional partners, TEAD1, 2 and 4 fail to divide, resulting in stunted vascular growth in mice. Conversely, activation of TAZ, the more abundant paralogue in ECs, boosts proliferation, leading to vascular hyperplasia. We find that YAP/TAZ promote angiogenesis by fuelling nutrient-dependent mTORC1 signalling. By orchestrating the transcription of a repertoire of cell-surface transporters, including the large neutral amino acid transporter SLC7A5, YAP/TAZ-TEAD stimulate the import of amino acids and other essential nutrients, thereby enabling mTORC1 activation. Dissociating mTORC1 from these nutrient inputs-elicited by the loss of Rag GTPases-inhibits mTORC1 activity and prevents YAP/TAZ-dependent vascular growth. Together, these findings define a pivotal role for YAP/TAZ-TEAD in controlling endothelial mTORC1 and illustrate the essentiality of coordinated nutrient fluxes in the vasculature.


Subject(s)
Endothelial Cells , Trans-Activators , Acyltransferases/metabolism , Animals , Endothelial Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Nutrients , TEA Domain Transcription Factors/metabolism , Trans-Activators/metabolism , YAP-Signaling Proteins/metabolism
14.
Cancer Immunol Res ; 10(4): 482-497, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35362044

ABSTRACT

Communication between tumors and the stroma of tumor-draining lymph nodes (TDLN) exists before metastasis arises, altering the structure and function of the TDLN niche. Transcriptional profiling of fibroblastic reticular cells (FRC), the dominant stromal population of lymph nodes, has revealed that FRCs in TDLNs are reprogrammed. However, the tumor-derived factors driving the changes in FRCs remain to be identified. Taking an unbiased approach, we have shown herein that lactic acid (LA), a metabolite released by cancer cells, was not only secreted by B16.F10 and 4T1 tumors in high amounts, but also that it was enriched in TDLNs. LA supported an upregulation of Podoplanin (Pdpn) and Thy1 and downregulation of IL7 in FRCs of TDLNs, making them akin to activated fibroblasts found at the primary tumor site. Furthermore, we found that tumor-derived LA altered mitochondrial function of FRCs in TDLNs. Thus, our results demonstrate a mechanism by which a tumor-derived metabolite connected with a low pH environment modulates the function of fibroblasts in TDLNs. How lymph node function is perturbed to support cancer metastases remains unclear. The authors show that tumor-derived LA drains to lymph nodes where it modulates the function of lymph node stromal cells, prior to metastatic colonization.


Subject(s)
Lactic Acid , Neoplasms , Fibroblasts , Humans , Lactic Acid/metabolism , Lymph Nodes/pathology , Neoplasms/pathology
15.
Gut ; 71(5): 879-888, 2022 05.
Article in English | MEDLINE | ID: mdl-35144974

ABSTRACT

OBJECTIVE: We assessed whether famotidine improved inflammation and symptomatic recovery in outpatients with mild to moderate COVID-19. DESIGN: Randomised, double-blind, placebo-controlled, fully remote, phase 2 clinical trial (NCT04724720) enrolling symptomatic unvaccinated adult outpatients with confirmed COVID-19 between January 2021 and April 2021 from two US centres. Patients self-administered 80 mg famotidine (n=28) or placebo (n=27) orally three times a day for 14 consecutive days. Endpoints were time to (primary) or rate of (secondary) symptom resolution, and resolution of inflammation (exploratory). RESULTS: Of 55 patients in the intention-to-treat group (median age 35 years (IQR: 20); 35 women (64%); 18 African American (33%); 14 Hispanic (26%)), 52 (95%) completed the trial, submitting 1358 electronic symptom surveys. Time to symptom resolution was not statistically improved (p=0.4). Rate of symptom resolution was improved for patients taking famotidine (p<0.0001). Estimated 50% reduction of overall baseline symptom scores were achieved at 8.2 days (95% CI: 7 to 9.8 days) for famotidine and 11.4 days (95% CI: 10.3 to 12.6 days) for placebo treated patients. Differences were independent of patient sex, race or ethnicity. Five self-limiting adverse events occurred (famotidine, n=2 (40%); placebo, n=3 (60%)). On day 7, fewer patients on famotidine had detectable interferon alpha plasma levels (p=0.04). Plasma immunoglobulin type G levels to SARS-CoV-2 nucleocapsid core protein were similar between both arms. CONCLUSIONS: Famotidine was safe and well tolerated in outpatients with mild to moderate COVID-19. Famotidine led to earlier resolution of symptoms and inflammation without reducing anti-SARS-CoV-2 immunity. Additional randomised trials are required.


Subject(s)
COVID-19 Drug Treatment , Famotidine , Adult , Double-Blind Method , Famotidine/therapeutic use , Female , Humans , Inflammation , SARS-CoV-2 , Treatment Outcome
16.
Cancer Discov ; 12(2): 450-467, 2022 02.
Article in English | MEDLINE | ID: mdl-34531253

ABSTRACT

An enhanced requirement for nutrients is a hallmark property of cancer cells. Here, we optimized an in vivo genetic screening strategy in acute myeloid leukemia (AML), which led to the identification of the myo-inositol transporter SLC5A3 as a dependency in this disease. We demonstrate that SLC5A3 is essential to support a myo-inositol auxotrophy in AML. The commonality among SLC5A3-dependent AML lines is the transcriptional silencing of ISYNA1, which encodes the rate-limiting enzyme for myo-inositol biosynthesis, inositol-3-phosphate synthase 1. We use gain- and loss-of-function experiments to reveal a synthetic lethal genetic interaction between ISYNA1 and SLC5A3 in AML, which function redundantly to sustain intracellular myo-inositol. Transcriptional silencing and DNA hypermethylation of ISYNA1 occur in a recurrent manner in human AML patient samples, in association with IDH1/IDH2 and CEBPA mutations. Our findings reveal myo-inositol as a nutrient dependency in AML caused by the aberrant silencing of a biosynthetic enzyme. SIGNIFICANCE: We show how epigenetic silencing can provoke a nutrient dependency in AML by exploiting a synthetic lethality relationship between biosynthesis and transport of myo-inositol. Blocking the function of this solute carrier may have therapeutic potential in an epigenetically defined subset of AML.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Heat-Shock Proteins/genetics , Inositol/biosynthesis , Leukemia, Myeloid, Acute/drug therapy , Symporters/genetics , Animals , Developmental Biology , Humans , Mice
17.
Cancer Res ; 82(5): 900-915, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34921016

ABSTRACT

The M2 pyruvate kinase (PKM2) isoform is upregulated in most cancers and plays a crucial role in regulation of the Warburg effect, which is characterized by the preference for aerobic glycolysis over oxidative phosphorylation for energy metabolism. PKM2 is an alternative-splice isoform of the PKM gene and is a potential therapeutic target. Antisense oligonucleotides (ASO) that switch PKM splicing from the cancer-associated PKM2 to the PKM1 isoform have been shown to induce apoptosis in cultured glioblastoma cells when delivered by lipofection. Here, we explore the potential of ASO-based PKM splice switching as a targeted therapy for liver cancer. A more potent lead constrained-ethyl (cEt)/DNA ASO induced PKM splice switching and inhibited the growth of cultured hepatocellular carcinoma (HCC) cells. This PKM isoform switch increased pyruvate-kinase activity and altered glucose metabolism. In an orthotopic HCC xenograft mouse model, the lead ASO and a second ASO targeting a nonoverlapping site inhibited tumor growth. Finally, in a genetic HCC mouse model, a surrogate mouse-specific ASO induced Pkm splice switching and inhibited tumorigenesis, without observable toxicity. These results lay the groundwork for a potential ASO-based splicing therapy for HCC. SIGNIFICANCE: Antisense oligonucleotides are used to induce a change in PKM isoform usage in hepatocellular carcinoma, reversing the Warburg effect and inhibiting tumorigenesis.


Subject(s)
Alternative Splicing , Carcinoma, Hepatocellular , Liver Neoplasms , Pyruvate Kinase , Animals , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Glycolysis/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Mice , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Protein Isoforms/genetics , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
18.
J Biol Chem ; 298(2): 101501, 2022 02.
Article in English | MEDLINE | ID: mdl-34929172

ABSTRACT

Activated macrophages undergo metabolic reprogramming, which not only supports their energetic demands but also allows for the production of specific metabolites that function as signaling molecules. Several Krebs cycles, or Krebs-cycle-derived metabolites, including succinate, α-ketoglutarate, and itaconate, have recently been shown to modulate macrophage function. The accumulation of 2-hydroxyglutarate (2HG) has also been well documented in transformed cells and more recently shown to play a role in T cell and dendritic cell function. Here we have found that the abundance of both enantiomers of 2HG is increased in LPS-activated macrophages. We show that L-2HG, but not D-2HG, can promote the expression of the proinflammatory cytokine IL-1ß and the adoption of an inflammatory, highly glycolytic metabolic state. These changes are likely mediated through activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) by L-2HG, a known inhibitor of the HIF prolyl hydroxylases. Expression of the enzyme responsible for L-2HG degradation, L-2HG dehydrogenase (L-2HGDH), was also found to be decreased in LPS-stimulated macrophages and may therefore also contribute to L-2HG accumulation. Finally, overexpression of L-2HGDH in HEK293 TLR4/MD2/CD14 cells inhibited HIF-1α activation by LPS, while knockdown of L-2HGDH in macrophages boosted the induction of HIF-1α-dependent genes, as well as increasing LPS-induced HIF-1α activity. Taken together, this study therefore identifies L-2HG as a metabolite that can regulate HIF-1α in macrophages.


Subject(s)
Glutarates , Hypoxia-Inducible Factor 1, alpha Subunit , Lipopolysaccharides , Macrophages , Glutarates/metabolism , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/enzymology , Macrophages/metabolism
20.
Nat Commun ; 12(1): 4814, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376668

ABSTRACT

Glutamoptosis is the induction of apoptotic cell death as a consequence of the aberrant activation of glutaminolysis and mTORC1 signaling during nutritional imbalance in proliferating cells. The role of the bioenergetic sensor AMPK during glutamoptosis is not defined yet. Here, we show that AMPK reactivation blocks both the glutamine-dependent activation of mTORC1 and glutamoptosis in vitro and in vivo. We also show that glutamine is used for asparagine synthesis and the GABA shunt to produce ATP and to inhibit AMPK, independently of glutaminolysis. Overall, our results indicate that glutamine metabolism is connected with mTORC1 activation through two parallel pathways: an acute alpha-ketoglutarate-dependent pathway; and a secondary ATP/AMPK-dependent pathway. This dual metabolic connection between glutamine and mTORC1 must be considered for the future design of therapeutic strategies to prevent cell growth in diseases such as cancer.


Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Glutamine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction/physiology , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , HCT116 Cells , HEK293 Cells , Humans , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...