Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Res Ther ; 8: 34, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27572246

ABSTRACT

BACKGROUND: Familial Alzheimer's disease (FAD) is caused by mutations in the amyloid precursor protein (APP) or presenilin (PS). Most PS mutations, which account for the majority of FAD cases, lead to an increased ratio of longer to shorter forms of the amyloid beta (Aß) peptide. The therapeutic rationale of γ-secretase modulators (GSMs) for Alzheimer's disease is based on this genetic evidence as well as on enzyme kinetics measurements showing changes in the processivity of the γ-secretase complex. This analysis suggests that GSMs could potentially offset some of the effects of PS mutations on APP processing, thereby addressing the root cause of early onset FAD. Unfortunately, the field has generated few, if any, molecules with good central nervous system (CNS) drug-like properties to enable proof-of-mechanism studies. METHOD: We characterized the novel GSM FRM-36143 using multiple cellular assays to determine its in vitro potency and off-target activity as well as its potential to reverse the effect of PS mutations. We also tested its efficacy in vivo in wild-type mice and rats. RESULTS: FRM-36143 has much improved CNS drug-like properties compared to published GSMs. It has an in vitro EC50 for Aß42 of 35 nM in H4 cells, can reduce Aß42 to 58 % of the baseline in rat cerebrospinal fluid, and also increases the non-amyloidogenic peptides Aß37 and Aß38. It does not inhibit Notch processing, nor does it inhibit 24-dehydrocholesterol reductase (DHCR24) activity. Most interestingly, it can reverse the effects of presenilin mutations on APP processing in vitro. CONCLUSIONS: FRM-36143 possesses all the characteristics of a GSM in terms of Aß modulation Because FRM-36143 was able to reverse the effect of PS mutations, we suggest that targeting patients with this genetic defect would be the best approach at testing the efficacy of a GSM in the clinic. While the amyloid hypothesis is still being tested with ß-site APP-cleaving enzyme inhibitors and monoclonal antibodies in sporadic AD, we believe it is not a hypothesis for FAD. Since GSMs can correct the molecular defect caused by PS mutations, they have the promise to provide benefits to the patients when treated early enough in the course of the disease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Nootropic Agents/therapeutic use , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , HEK293 Cells , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/toxicity , Humans , Male , Mice , Mice, 129 Strain , Mutation , Neocortex/drug effects , Neocortex/metabolism , Nootropic Agents/pharmacokinetics , Nootropic Agents/toxicity , Presenilin-1/genetics , Presenilin-1/metabolism , Rats, Wistar
2.
Biochem Pharmacol ; 91(4): 543-51, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25091561

ABSTRACT

Two investigational compounds (FRM-1, (R)-7-fluoro-N-(quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide and FRM-2, (R)-7-cyano-N-(quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide) resided in rat brain longer than in systemic circulation. In Caco-2 directional transport studies, they both showed good intrinsic passive permeability but differed significantly in efflux susceptibility (efflux ratio of <2 and ∼7, respectively), largely attributed to P-glycoprotein (P-gp). Capitalizing on these interesting properties, we investigated how cerebrospinal fluid (CSF) concentration (CCSF) would be shaped by unbound plasma concentration (Cu,p) and unbound brain concentration (Cu,b) in disequilibrium conditions and at steady state. Following subcutaneous administration, FRM-1CCSF largely followed Cu,p initially and leveled between Cu,p and Cu,b. However, it gradually approached Cu,b and became lower than, but parallel to Cu,b at the terminal phase. In contrast, FRM-2CCSF temporal profile mostly paralleled the Cu,p but was at a much lower level. Upon intravenous infusion to steady state, FRM-1CCSF and Cu,b were similar, accounting for 61% and 69% of the Cu,p, indicating a case of largely passive diffusion-governed brain penetration where CCSF served as a good surrogate for Cu,b. On the contrary, FRM-2CCSF and Cu,b were remarkably lower than Cu,p (17% and 8% of Cu,p, respectively), suggesting that FRM-2 brain penetration was severely impaired by P-gp-mediated efflux and CCSF underestimated this impact. A semi-physiologically based pharmacokinetic (PBPK) model was constructed that adequately described the temporal profiles of the compounds in the plasma, brain and CSF. Our work provided some insight into the relative importance of blood-brain barrier (BBB) and blood-CSF barrier (BCSFB) in modulating CCSF.


Subject(s)
Brain/metabolism , Thiophenes/pharmacokinetics , Animals , Blood-Brain Barrier , Caco-2 Cells , Humans , Male , Models, Theoretical , Rats , Rats, Wistar , Thiophenes/cerebrospinal fluid
3.
Mol Neurodegener ; 7: 61, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23249765

ABSTRACT

BACKGROUND: A hallmark of Alzheimer's disease is the presence of senile plaques in human brain primarily containing the amyloid peptides Aß42 and Aß40. Many drug discovery efforts have focused on decreasing the production of Aß42 through γ-secretase inhibition. However, identification of γ-secretase inhibitors has also uncovered mechanism-based side effects. One approach to circumvent these side effects has been modulation of γ-secretase to shift Aß production to favor shorter, less amyloidogenic peptides than Aß42, without affecting the overall cleavage efficiency of the enzyme. This approach, frequently called γ-secretase modulation, appears more promising and has lead to the development of new therapeutic candidates for disease modification in Alzheimer's disease. RESULTS: Here we describe EVP-0015962, a novel small molecule γ-secretase modulator. EVP-0015962 decreased Aß42 in H4 cells (IC50 = 67 nM) and increased the shorter Aß38 by 1.7 fold at the IC50 for lowering of Aß42. AßTotal, as well as other carboxyl-terminal fragments of amyloid precursor protein, were not changed. EVP-0015962 did not cause the accumulation of other γ-secretase substrates, such as the Notch and ephrin A4 receptors, whereas a γ-secretase inhibitor reduced processing of both. A single oral dose of EVP-0015962 (30 mg/kg) decreased Aß42 and did not alter AßTotal peptide levels in a dose-dependent manner in Tg2576 mouse brain at an age when overt Aß deposition was not present. In Tg2576 mice, chronic treatment with EVP-0015962 (20 or 60 mg/kg/day in a food formulation) reduced Aß aggregates, amyloid plaques, inflammatory markers, and cognitive deficits. CONCLUSIONS: EVP-0015962 is orally bioavailable, detected in brain, and a potent, selective γ-secretase modulator in vitro and in vivo. Chronic treatment with EVP-0015962 was well tolerated in mice and lowered the production of Aß42, attenuated memory deficits, and reduced Aß plaque formation and inflammation in Tg2576 transgenic animals. In summary, these data suggest that γ-secretase modulation with EVP-0015962 represents a viable therapeutic alternative for disease modification in Alzheimer's disease.


Subject(s)
Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/drug effects , Amyloid beta-Peptides/drug effects , Behavior, Animal/drug effects , Biphenyl Compounds/pharmacology , Phenylpropionates/pharmacology , Propionates/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cell Line, Tumor , Humans , Mice , Mice, Transgenic , Transfection
4.
Am J Nephrol ; 30(6): 521-6, 2009.
Article in English | MEDLINE | ID: mdl-19828940

ABSTRACT

BACKGROUND/AIMS: Cisplatin (CIS) induces nephrotoxicity partly through renal vasoconstriction and decreased glomerular filtration effects thought to involve adenosine acting on adenosine A(1) receptors (A1Rs). We studied the effect of the orally active, A1R antagonist tonapofylline (BG9928) on biochemical measures of renal function in CIS-induced acute kidney injury (AKI) in rats. METHODS: Tonapofylline, 1 mg/kg b.i.d., p.o., was administered on days 0-1 or 0-6 to rats treated with CIS 5.5 mg/kg i.v. Prednisolone (PRED) 5 mg/kg s.c. (day 0) served as a positive control. Serum creatinine and urea nitrogen (BUN) were measured in serial blood samples taken over the 13-day study period. RESULTS: CIS produced significant elevations in creatinine, reduction in body weight and marked proximal tubular injury throughout the renal cortex and outer medulla. Tonapofylline, days 0-1 or 0-6 and PRED all produced sustained reductions in post-CIS serum creatinine and BUN levels compared with controls, improved body weight recovery and significant attenuation of CIS-induced kidney pathology scores. CONCLUSION: These data support the involvement of A1Rs in CIS-induced AKI in rats. Tonapofylline may be useful in the clinical setting for the prevention of kidney failure induced by nephrotoxic agents such as CIS.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Adenosine A1 Receptor Antagonists , Cisplatin/toxicity , Xanthines/pharmacology , Acute Kidney Injury/pathology , Animals , Antineoplastic Agents/toxicity , Blood Urea Nitrogen , Creatinine/blood , Cytoprotection , Drug Interactions , Female , Glucocorticoids/pharmacology , Kidney Function Tests , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Prednisolone/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...