ABSTRACT
BACKGROUND: There is debate whether pressure transmission within the lungs and alveolar collapse follow a hydrostatic pattern or the compression exerted by the weight of the heart and the diaphragm causes collapse localized in the areas adjacent to these structures. The second hypothesis proposes the existence of a cephalocaudal gradient in alveolar collapse. We aimed to define whether or not lung density and collapse follow a 'liquid-like' pattern with homogeneous isogravitational layers along the cephalocaudal axis in acute respiratory distress syndrome lungs. METHODS: Acute respiratory distress syndrome patients were submitted to full lung computed tomography scans at positive end-expiratory pressure (PEEP) zero (before) and 25 cmH2 O after a maximum-recruitment maneuver. PEEP was then decreased by 2 cmH2 O every 4 min, and a semi-complete scan performed at the end of each PEEP step. RESULTS: Lung densities were homogeneous within each lung layer. Lung density increased along the ventrodorsal axis toward the dorsal region (ß = 0.49, P < 0.001), while there was no increase, but rather a slight decrease, toward the diaphragm along the cephalocaudal axis and toward the heart. Higher PEEP attenuated density gradients. At PEEP 18 cmH2 O, dependent lung regions started to collapse massively, while best compliance was only reached at a lower PEEP. CONCLUSIONS: We could not detect cephalocaudal gradients in lung densities or in alveolar collapse. Likely, external pressures applied on the lung by the chest wall, organs, and effusions are transmitted throughout the lung in a hydrostatic pattern with homogeneous consequences at each isogravitational layer. A single cross-sectional image of the lung could fully represent the heterogeneous mechanical properties of dependent and non-dependent lung regions.
Subject(s)
Lung/diagnostic imaging , Lung/physiopathology , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/physiopathology , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged, 80 and over , Female , Humans , Male , Middle Aged , Positive-Pressure Respiration , Pulmonary Alveoli/diagnostic imaging , Pulmonary Alveoli/physiopathology , Supine Position/physiology , Young AdultABSTRACT
INTRODUCTION: Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. METHODS: Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. RESULTS: Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. CONCLUSIONS: During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature.
Subject(s)
Blood Pressure , Body Temperature , Extracorporeal Membrane Oxygenation , Multiple Organ Failure/physiopathology , Multiple Organ Failure/surgery , Animals , Blood Flow Velocity , Female , SwineABSTRACT
The mortality rate of severe sepsis is still high (20 to 65%) despite the advances in critical care. The most important determinant of the prognosis in this condition is the occurrence of multiple organ dysfunction syndrome (MODS). The lung is the most frequently identified organ to fail in sepsis and is also the most frequent primary site of infection. The development of acute respiratory distress syndrome (ARDS) is common in those cases. The current understanding of the pathogenesis of ARDS suggests that the degree of inflammatory response and its sustained leukocyte activation may determine the clinical evolution of ARDS. The way that mechanical ventilation is delivered is responsible for the start and/or the perpetuation of a pro-inflammatory cascade activation that, due to the loss of the alveolar compartmentalization in ARDS, can reach the bloodstream and induce MODS. On the other hand, during sepsis, the alveolar compartmentalization is lost, allowing the passage of cytokines, released to the bloodstream by any other organ, to the pulmonary endothelium. These cytokines, especially IL-1, TNF-alpha and IL-8, have important roles in the lung dysfunction. Experimental and clinical studies have been demonstrated that ventilation strategies using low tidal volumes and limitation of airway pressures can block cytokines and reduce mortality of patients with respiratory failure. The studies are still insufficient to determine the role of pharmacological therapies in those patients.