Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4974, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424312

ABSTRACT

The cGAS-STING pathway appears to contribute to dysregulated inflammation during coronavirus disease 2019 (COVID-19); however, inflammatory factors related to long COVID are still being investigated. In the present study, we evaluated the association of cGAS and STING gene expression levels and plasma IFN-α, TNF-α and IL-6 levels with COVID-19 severity in acute infection and long COVID, based on analysis of blood samples from 148 individuals, 87 with acute COVID-19 and 61 in the post-COVID-19 period. Quantification of gene expression was performed by real-time PCR, and cytokine levels were quantified by ELISA and flow cytometry. In acute COVID-19, cGAS, STING, IFN-α, TNF-α, and IL-6 levels were higher in patients with severe disease than in those with nonsevere manifestations (p < 0.05). Long COVID was associated with elevated cGAS, STING and IFN-α levels (p < 0.05). Activation of the cGAS-STING pathway may contribute to an intense systemic inflammatory state in severe COVID-19 and, after infection resolution, induce an autoinflammatory disease in some tissues, resulting in long COVID.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Interferon-alpha , Interleukin-6 , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/genetics
2.
Antioxidants (Basel) ; 9(1)2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878036

ABSTRACT

Piceatannol is a resveratrol metabolite that is considered a potent antioxidant and cytoprotector because of its high capacity to chelate/sequester reactive oxygen species. In pathogenesis of periodontal diseases, the imbalance of reactive oxygen species is closely related to the disorder in the cells and may cause changes in cellular metabolism and mitochondrial activity, which is implicated in oxidative stress status or even in cell death. In this way, this study aimed to evaluate piceatannol as cytoprotector in culture of human periodontal ligament fibroblasts through in vitro analyses of cell viability and oxidative stress parameters after oxidative stress induced as an injury simulator. Fibroblasts were seeded and divided into the following study groups: control, vehicle, control piceatannol, H2O2 exposure, and H2O2 exposure combined with the maintenance in piceatannol ranging from 0.1 to 20 µM. The parameters analyzed following exposure were cell viability by trypan blue exclusion test, general metabolism status by the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method, mitochondrial activity through the ATP production, total antioxidant capacity, and reduced gluthatione. Piceatannol was shown to be cytoprotective due the maintenance of cell viability between 1 and 10 µM even in the presence of H2O2. In a concentration of 0.1 µM piceatannol decreased significantly cell viability but increased cellular metabolism and antioxidant capacity of the fibroblasts. On the other hand, the fibroblasts treated with piceatannol at 1 µM presented low metabolism and antioxidant capacity. However, piceatannol did not protect cells from mitochondrial damage as measured by ATP production. In summary, piceatannol is a potent antioxidant in low concentrations with cytoprotective capacity, but it does not prevent all damage caused by hydrogen peroxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...