Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 97: 34-45, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28064049

ABSTRACT

Sulphated polysaccharides extracted from algae have been extensively studied for their diverse biological activities. Thus, the purpose of this study was to evaluate the chemical composition, the anti-diarrhoeal effect and acute toxicity of a sulphated polysaccharide fraction obtained from Gracilaria intermedia (SP-Gi). Initially, the FT-IR of SP-Gi revealed to be an agaran with sulphation at C-6 of the l-galactosyl residues. The anti-diarrhoeal activity of SP-Gi was evaluated in a castor oil-induced diarrhoea model. The effects of SP-Gi on enteropooling, Na +-K +-ATPase activity, gastrointestinal transit, and gastric emptying were then examined. Subsequently, the effect of SP-Gi on diarrhoea induced by cholera toxin (CT) and Escherichia coli was examined. In addition, an acute toxicity test was conducted in accordance with OECD guideline 423. Pre-treatment with SP-Gi reduces the total faeces, total diarrhoeal faeces, and enteropooling. SP-Gi (30mg/kg p.o.) increased Na+/K+-ATPase activity and reduced gastrointestinal transit through anticholinergic mechanisms. ELISA demonstrated that SP-Gi can interact with GM1 receptors and CT. SP-Gi reduced diarrhoea induced by E. coli and prevented weight loss in the animals. Moreover, SP-Gi did not induce any toxicity signs. These results suggest that SP-Gi is a possible candidate for the treatment of diarrhoeal illnesses.


Subject(s)
Diarrhea/drug therapy , Gracilaria/chemistry , Polysaccharides/adverse effects , Polysaccharides/pharmacology , Safety , Sulfates/chemistry , Animals , Castor Oil/pharmacology , Diarrhea/chemically induced , Diarrhea/physiopathology , Escherichia coli/drug effects , Female , Gastric Emptying/drug effects , Intestines/drug effects , Intestines/physiopathology , Male , Mice , Polysaccharides/chemistry , Polysaccharides/therapeutic use
2.
Carbohydr Polym ; 152: 140-148, 2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27516258

ABSTRACT

A sulfated polysaccharide (SFP) fraction from the marine alga Solieria filiformis was extracted and submitted to microanalysis, molar mass estimation and spectroscopic analysis. We evaluated its gastroprotective potential in vivo in an ethanol-induced gastric damage model and its in vitro antioxidant properties (DPPH, chelating ferrous ability and total antioxidant capacity). Its chemical composition revealed to be essentially an iota-carrageenan with a molar mass of 210.9kDa and high degree of substitution for sulfate groups (1.08). In vivo, SFP significantly (P<0.05) reduced, in a dose dependent manner, the ethanol-induced gastric damage. SFP prevents glutathione consume and increase of malondialdehyde and hemoglobin levels. SFP presented an IC50 of 1.77mg/mL in scavenging DPPH. The chelating ferrous ability was 38.98%, and the total antioxidant capacity was 2.01mg/mL. Thus, SFP prevents the development of ethanol-induced gastric damage by reducing oxidative stress in vivo and possesses relevant antioxidant activity in vitro.


Subject(s)
Antioxidants , Oxidative Stress/drug effects , Polysaccharides , Rhodophyta/chemistry , Stomach Diseases/prevention & control , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Ethanol/toxicity , Mice , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Stomach Diseases/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...